Fluidized-Sand Biofilters

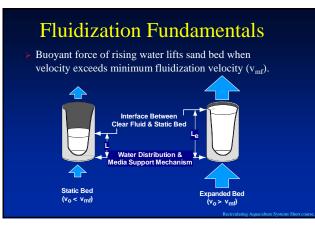
Steven Summerfelt Freshwater Institute, Shepherdstown, WV

> Michael Timmons Cornell University, Ithaca, NY

Benefits of FSB

- > Treat dissolved wastes.
- > Cost effective for large recycle systems:
 - filter sand is relatively inexpensive,
 cost for surface area is low (\$0.02-0.001/m²)
 - ✓ biofilters scale to treat large flows
 - 1.5 15 m³/min
 - 400 to 4000 gal/min

FSB Can Be More Cost Effective


FSB are about 5 times less expensive than comparable trickling filters

(Summerfelt & Wade, 1998, <i>Recirc Today</i>)	Fluidized-sand biofilter #1	Fluidized-sand biofilter #2	Plastic media trickling filter
Flow capacity, L/min	1,520	2,280	2,000
Design feed load ^d , kg/day	58	64	59
Media specific surface area, m ² /m ³	11,300	11,300	180
Design TAN removal rate, g/d/m ²	0.06	0.06	0.2
Media volume, m ³	2.5	2.7	49.0
Cost of media, \$	380	415	20,600
Total biofilter cost, \$	\$6,000	\$5,500	\$28,000

FSB Can Be More Cost Effective at Large Scales

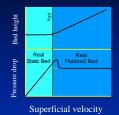
Capital cost estimates associated with biofilter choice for a 1 million lb/yr tilapia farm.

(Timmons et al., 2000)	Farm Cost	Cost, \$/lb/yr
RBC	\$668,000	\$0.68
Trickling Biofilter	\$620,000	\$0.62
Pressurized Bead Filter	\$296,000	\$0.30
Conventional FSB	\$124,000	\$0.12
Cyclo Bio™	\$76,000	\$0.08

Fluidization Fundamentals

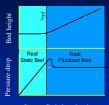
Bed expansion terminology:

- \checkmark 50% expansion , e.g., 1 m of static sand depth expands to 1.5 m
- \checkmark 100% expansion , e.g., 1 m of static sand depth expands to 2.0 m
- \checkmark 200% expansion , e.g., 1 m of static sand depth expands to 3.0 m

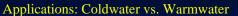

Recirculating Aquaculture Systems Short c

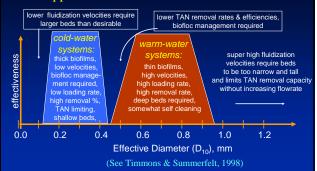
Fluidization Fundamentals

- Pressure drop across a sand bed
 - ✓ increases according to Ergun's equation until bed begins to expand.
 - remains constant at all water velocities after the expansion begins.


remains constant for all sand sizes,
 1 m of static sand requires about 1 m of water head to expand.

see Summerfelt and Cleasby (1996)




Fluidization Fundamentals

- Estimate bed expansion for a given sand as a function of water velocity, using:
 - ✓ water viscosity and density
 - ✓ sand size, sphericity
 - ✓ void space of the static bed
- see Summerfelt and Cleasby (1996)

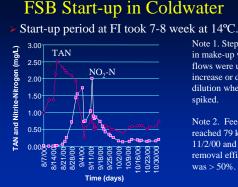
Superficial velocity

Nitrification Rates

> Warm-water & cold-water applications:

	g TAN removed per day		TAN
	per m ² surface area	per m ³ static sand vol.	Removal Efficiency
COLD-WATER BIOFILTER fine sand, ~11,500 m ² /m ³ $D_{10} = 0.17-0.25$ mm	0.06	700	70-90%
WARM-WATER BIOFILTER coarse sand, \sim 5,000 m ² /m ³ D ₁₀ = 0.6-0.8 mm	0.2	1000	10-30%

(summarized by Timmons & Summerfelt, 1998)

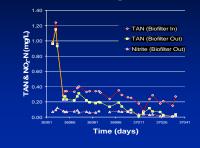

Coldwater Applications

> Fine sands ($D_{10} = 0.20-0.25$ mm) are used:

- ✓ provide high specific surface areas
 - 11,000 m²/m³
- ✓ require low water velocities
 - 0.7-1.0 cm/s
- provide longer hydraulic retention times across bed
 1-3 min

Coldwater Applications

- Fine sands (D₁₀ = 0.20-0.25 mm) are used:
 ✓ produce higher TAN removal efficiencies
 80-95% TAN removal each pass
 - provide excess nitrification capacity
 200% excess can be achieved
 - ✓ controls nitrite-nitrogen at very low levels • generally < 0.1-0.2 mg/L


FSB Start-up in Coldwater

Note 1. Step changes in make-up water flows were used to increase or decrease dilution when nitrite spiked.

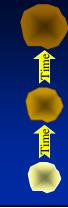
Note 2. Feeding reached 79 kg/day by 11/2/00 and TAN removal efficiency was > 50%.

FSB Performance in Coldwater

> FSB first started up on ammonium chloride.



Note 1. At stocking the fish density was 15 kg/m³ (mean fish weight = 150 g).

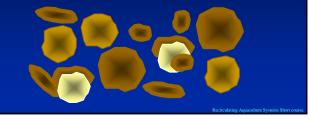

Note 2. Last measured fish density was 33.5 kg/m³ (mean fish weight = 320 grams).

Biofilm Development

Biofilms develop around individual sand grains;

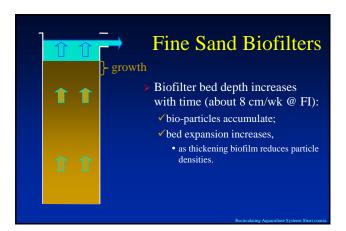
Suggested reading: Nam et al. 2000. Aquacultural Engineering, 22: 213-224.

Biofilm Development in Fine Sand Biofilters


biofilms thicken with time: ✓ decreasing particle density, ✓ increasing bed expansion, ✓ migrating to top of bed.

Biofilm Development in Fine Sand Biofilters

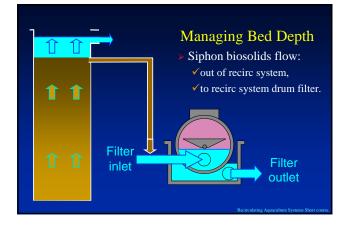
► Shear forces tear biofilm pieces from the sand,


Biofilm in Fine Sand Biofilters

Water velocities (0.7-1.4 cm/s) do not flush larger sheared pieces from the bed; ✓ such pieces accumulate & continue to grow.



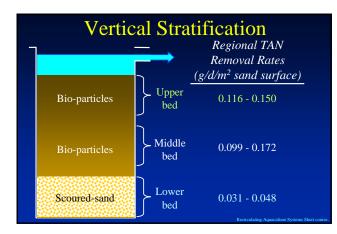
Biofilm in Fine Sand Biofilters > biofilms grow on the expanded sand


Managing Bed Depth

- Intermittent biosolids siphoning,
 remove top 15-30 cm of bed,
 only when bed reaches a max depth,
 technique used in past.
- Continuous biosolids siphoning: ✓ 4-20 L/min (1-5 gpm) siphon rate,
- ✓ 4-20 L/min (1-5 gpm) sipilon rate, ✓ 0.2 - 1% of total biofilter flow,
- ✓ current tecchnique in FI's growout system.

Managing Bed Depth

Siphoning biosolids from a biofilter in the Freshwater Institute's old research system.





Vertical Stratification

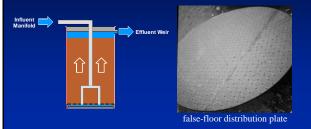
- > The beds are vertically stratified in:
 - \checkmark sand size
 - ✓ bed expansion
 - \checkmark biofilm thickness and biofloc size
 - ✓ nitrification rate

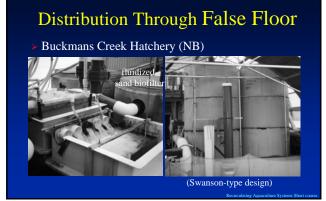
Vertical Stratification Particle Size 0.320 to 0.341 mm sand Upper **Bio-particles** 4-15 μm biofilm 231-257% expanded bed 0.9-1.1 mm biofloc 0.343 to 0.358 mm sand **Bio-particles** . Middle 7-20 µm biofilm bed 0.9-1.7 mm biofloc 0.421 to 0.434 mm sand Scoured-sand Lower no visible biofilm 59-68% expanded bed no biofloc

orifices distributed across false-floor (controlling ΔP) orifices distributedacross pipe-manifoldal(controlling ΔP)(1)

slotted inlet about circumference (NO controlling ΔP)

Distribution by Vertical Probes




(Designed by Dallas Weaver)

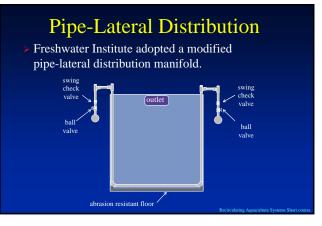
(Designed by Dallas Weaver)

Distribution Through False Floor

Eric Swanson reported (Aqua Expo, 1992) flow injection underneath a false floor.

Distribution Through False Floor

- ➢ Formerly Penobscot Smolt Hatchery (Franklin, ME)
- > Currently Center for Cooperative Aquaculture Research


Distribution Through False Floor

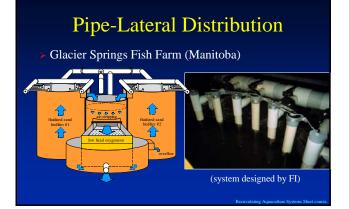
> Oak Bay Hatchery, Cooke Aquaculture (NB)

<section-header>

Pipe-Lateral Distribution

Modified pipe-lateral distribution manifold at Freshwater Institute's old facility.

Pipe-Lateral Distribution


To create uniform flow distribution:

> ✓ Pressure drop (ΔP) across orifice should be ≥ headloss through the sand bed (i.e., ≥ depth of static sand):

 ΔP_{orif}

 $\begin{array}{l} Q_{orif} = flowrate \ in \ ft^3/s \\ A_{orif} = orifice \ area \ in \ ft^2 \\ C = 0.6 \ and \ g = 32.2 \ ft/s^2 \end{array}$

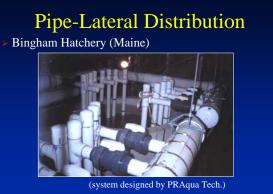
Pipe-Lateral Distribution

► Integrated Aquaculture Systems (PA)

(system designed by FI)

Pipe-Lateral Distribution

Fingerlakes Aquaculture (NY)



(farm designed by Mike Timmons)

Pipe-Lateral Distribution

Hunting Creek Fisheries (MD)

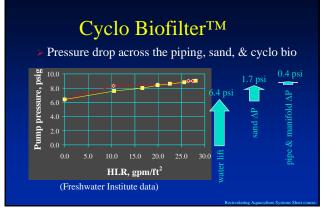
Pipe-Lateral Distribution

(systemdesigned by PRAqua Tech.) Courtesy of PRAqua Technologies (BC)

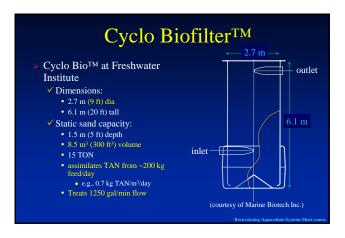
Pipe-Lateral Distribution

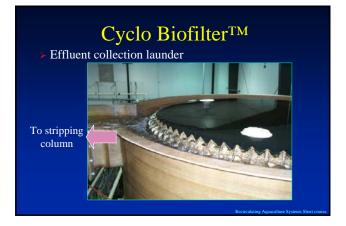
Three salmon smolt systems at Nutreco's Big Tree Creek Hatchery (BC)

Cyclo BiofilterTM


Patent protected technology from Marine Biotech Inc. (Beverly, MA)

Cyclo BiofilterTM


➢ Water injected tangentially into circular plenum and through 1.9 cm (3/4") slotted inlet about its base.



Cyclo BiofilterTM Advantage

- > Cyclo Bio requires less pressure to operate.
 - ✓ 0.1-0.3 bar (2-4 psig) less pressure was required to operate a cyclo bio compared to a modified-pipe manifold FSB.
 - assuming a similar fluidized-sand biofilter height.
 - \checkmark cyclo bio's reduce ΔP of piping and inlet orifice

<section-header><text>

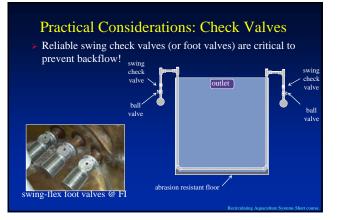
Cyclo BioTM at WV Aqua > Three 9 ft dia Cyclo Bio's installed at char farm

(system designed by PRAqua Tech.)

Cyclo Bio'sTM at Fingerlakes Aqua > Four 11 ft dia Cyclo Bio's (Groton, NY)

(farm designed by Mike Timmons)

Practical Considerations: Sand Blasting


> Installation of an abrasion resistant floor is critical.

Practical Considerations: Clean Outs

 Clean-out caps on all distribution pipes provides a method to remove debris that could plug laterals.

Practical Considerations: Biosolids Removal

Siphon biosolids bed regularly to prevent them from overtopping biofilter.

Practical Considerations: Viewing Bed

Select a clear FRP vessel to provide a visual of expanded bed.

Practical Considerations: Air Bubbles

Prevent bubbles from being pumped into fluidizedsand biofilters. Bubbles washout sand!

Purchasing Filter Sand

Sand suppliers usually report the effective size and uniformity coefficient of their sand.

Characterizing Sand: D₁₀

The "effective size" (D₁₀) is defined as the opening size which will pass only the smallest 10%, by weight, of the granular sample. The D₁₀ provides an estimate of the smallest sand in the sample and is the size used to estimate the maximum expansion at a given superficial velocity.

Characterizing Sand: UC

The "*uniformity coefficient*" (UC) is a quantitative measure of the variation in particle size of a given media and is defined as the ratio of D_{60} to D_{10} .

Characterizing Sand: D₉₀

- The "largest size" (D₉₀) is the sieve size for which 90% of the grains by weight are smaller.
- The D_{90} provides an estimate of the largest sand in the sample and is the size to estimate the minimum expansion at a given velocity. The D_{90} can be estimated from the D_{10} and the UC: $D_{90} = D_{10} \cdot (10^{1.67 \cdot \log(UC)})$

Characterizing Sand: D₅₀

The "mean size" (D_{50}) is the sieve size for which approximately 50% of the grains by weight are smaller. The D_{50} provides an estimate of the average size of the sand in the sample and is the value used during design to estimate the average bed expansion at a given superficial velocity: $D_{50} = D_{10} \cdot (10^{0.83 \log(UC)})$

Characterizing Sand: S_b

The "bed specific surface area" is the specific surface area available per unit of bed volume (S_b); this can can be estimated using estimates for the static bed void fraction (ε ≈ 0.45) and sand sphericity (Ψ ≈ 0.75):

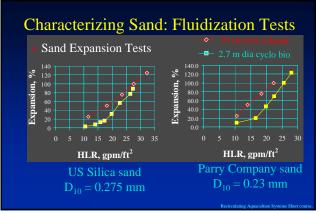
✓ Recognize the limits of guesstimates.

Purchasing Filter Sand

- > Some filter sand suppliers listed in the
- ✓ RNOTBORATS Sand and Gravel (NJ)

609-785-0166 ph ✓ Unimin Corporation

- 800-243-9004 ph
- ✓ U.S. Silica (WV)
- 800-243-7500 ph
- Unifilt Corporation (PA)
 412-758-3833 ph


- American Materials Corp. (WI)
 800 -238-9139 ph
- Morie Company, Inc. (NJ)
 800-257-7034 ph
- R.W. Sidley, Inc. (OH)
 800-536-9343 ph

•*as published in the 1998 AWWA Sourcebook and 1996 AWWA Buyers Guide

Characterizing Sand: Sieve Analysis

▶ Typical mean % retained at a given screen size.

USA ST	D Sieve Size	Typical Me	an % Retained
mesh	mm opening	US Silica #1 Q-ROK	Parry Company 35/42 silica sana
20	0.84	0	0
30	0.60	8	0
40	0.42	52	9
50	0.30	32	45
70	0.21	7	40
100	0.15	1	6
140	0.11	0	0

Purchasing Filter Sand

- Freshwater Institute recently purchased filter sands from:
 - ✓ US Silica Company (Berkeley Springs, WV)
 - D₁₀ = 0.275 mm, UC =1.7
 - \$1300 for 15 tons delivered in 100 lb bags on pallets
 - ✓ *The Parry Company* (Richmond Dale, OH)
 - $D_{10} = 0.23$ mm, UC = 1.5
 - \$1800 for 15 tons delivered by pneumatic truck

<text>

Installing Filter Sand

Parry Company sand: 15 tons of sand were pneumatically transferred from a tank truck.

Installing Filter Sand

Wash fine clay found in new sand out of system before recirculating water to fish.

Questions?

Contact Steven Summerfelt

- ✓s.summerfelt@freshwaterinstitute.org
- ✓ 304-876-2815, ext. 211