SUPPLEMENTAL FEEDING OF NILE TILAPIA (OREOCHROMIS NILOTICUS L.) IN FERTILIZED PONDS USING COMBINED FEED REDUCTION STRATEGIES

9th International Symposium on Tilapia in Aquaculture Shanghai Ocean University, Shanghai, China April 21-25, 2011

INVESTIGATORS

Remedios B. Bolivar, Eddie Boy T. Jimenez Roberto Miguel V. Sayco

Freshwater Aquaculture Center, Central Luzon State University, Science City of Munoz, Nueva Ecija, Philippines

Russell J. Borski

Department of Zoology, North Carolina State University, Raleigh, NC, USA

INTRODUCTION

- Grow-out culture of tilapia has been modified with several technologies including feeding option that promotes cost-saving strategies
- Reduction of food costs without a reduction in fish yield can be a result of more efficient food consumption (i.e. lack of waste), better food utilization (increased food conversion ratio) or both

Feed is the most costly component of growing tilapia
It constitutes 60-70% of the total variable costs for producing tilapia

a start the	643,854
A start way	
37,801	
262,400	<u> </u>
5,417	
42,652	
19,718	
49,088	
A CONTRACTOR AND	
	417,070
A CONTRACT OF A	226,778
40	
26	
35%	
· · ·	ATER A
	37,801 262,400 5,417 42,652 19,718 49,088 40 26 35%

INTRODUCTION

 Previous Aquafish CRSP studies introduced different feeding strategies with the aim of reducing the total cost of tilapia production that can increase the profit of the farmers while limiting the degradation of the environment with lesser nutrient load given to the fish

AquaFish CRSP Feeding Strategies

Delayed feeding

- Sub-satiation feeding (Brown et al., 2004)
- Alternate-day feeding (Bolivar *et al.*, 2010)
 Combined feed reduction strategies (Borski *et al.*, 2010)

Objective of the Study

To determine the effect of using combined feed reduction strategies on the grow-out culture of Nile tilapia in fertilized earthen ponds

Place and Duration of the Study

Freshwater Aquaculture Center, Central Luzon State University, Science City of Munoz, Nueva Ecija, Philippines

July – September 2010

- Experimental Units
 - Nine (9) 500 m² earthen ponds
- Stocking Density
 - -4 pcs./m^2 (Average Weight = 0.36g)
- There were 3 replicates per treatment
- Fish were all fed with Commercial Feeds
 - First Month Pre-starter Feeds with 34% CP
 - Second Month Starter Feeds with 34% CP
 - Third Month until Harvest Grower Feeds with 31% CP

 Individual length and weight of fish samples were measured on the initial and final sampling

 Fish sampling measuring bulk weight was done every two weeks

Feeding adjustment was done biweekly based on a feeding rate from 20% down to 2% of the average body weight

 Water quality parameters were measured weekly such as water temperature, dissolved oxygen, pH, Secchi disc visibility depth (SDVD) and total ammonia nitrogen

- Weekly fertilization of the experimental ponds was adjusted based on the SDVD
- Inorganic Fertilizers (Urea and Ammonium Phosphate) were used at the rate of 28 kg N and 5.6 kg P per hectare per week

- Treatments
 - Treatment I 67% Daily Feeding until harvest
 - Treatment II 67% Daily Feeding for 60 days, 50% daily feeding until harvest
 - Treatment III 67% daily feeding for 60 days, 100% alternate-day feeding until harvest

Statistical Analysis

Data analysis was done using Analysis of Variance (ANOVA) and Duncan's Multiple Range Test (DMRT) for the comparison of treatment means.

RESULTS AND DISCUSSION

Growth pattern of fish stock

Growth performance of fish stock

Treatment	Final Average Weight (g)	Final Average Length (cm)
I	183.1 <u>+</u> 77.1ª	20.1 <u>+</u> 2.9 ^a
II	168.5 <u>+</u> 39.9 ^a	19.9 <u>+</u> 1.4 ^a
III	183.1 <u>+</u> 16.0ª	20.5 <u>+</u> 0.6 ^a

Means with the same letter superscipt within a column are not significantly different (P<0.05)

Growth performance of fish stock

Treatmen t	Feed Conversion Ratio	Yield per Hectare (kg/ha)	Feed Consumed per Hectare (kg/ha)	Percent Survival (%)
I	1.8 <u>+</u> 0.3ª	2968.7 <u>+</u> 439.6 ^a	5201.1 <u>+</u> 1238ª	46.9 <u>+</u> 24.1ª
II	2.0 <u>+</u> 0.1ª	1980.7 <u>+</u> 541.8 ^b	3965.2 <u>+</u> 1037ª	29.3 <u>+</u> 4.7 ^a
III	2.0 <u>+</u> 0.2 ^a	2024.7 <u>+</u> 329.0 ^b	4045.3 <u>+</u> 1104ª	27.7 <u>+</u> 4.1ª

Means with the same letter superscipt within a column are not significantly different (P<0.05)

Water Quality Readings

n – Max 8 – 12.87 3 – 36.37	Min – Max 1.20 – 11.41	Min – Max 1.39 – 6.64
8 – 12.87 3 – 36.37	1.20 – 11.41	1.39 – 6.64
3 – 36.37		
	28.53 – 36.27	28.50 - 37.50
)7 – 8.37	6.97 – 8.20	6.93 – 8.27
7 – 1.090	0.018 – 1.456	0.022 – 0.942
67 – 0.075	0.067 – 0.075	0.075 – 0.075
.3 – 72.7	22.3 – 78.3	24.3 - 57.7
		ADA DOCUMENTER ADOCUMENT
	3 - 36.37 7 - 8.37 7 - 1.090 7 - 0.075 .3 - 72.7	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

SUMMARY

- Results of this study showed that there were no significant differences observed on the growth performance and survival of Nile tilapia after 120 days of culture period
- Significant difference was observed on the fish yield with Treatment I having the highest yield among treatments

CONCLUSION

The combined feed reduction strategies did not significantly affect the growth performance of the fish

It reduced the cost of grow-out production of tilapia due to the reduction of feed

Funding for this research was provided by the

COLLABORATIVE RESEARCH SUPPORT PROGRAM

Ť

The AquaFish CRSP is funded in part by United States Agency for International Development (USAID) Cooperative Agreement No. EPP-A-00-06-00012-00 and by US and Host Country partners.

The contents of this presentation do not necessarily represent an official position or policy of the United States Agency for International Development (USAID). Mention of trade names or commercial products in this presentation does not constitute endorsement or recommendation for use on the part of USAID or the AquaFish Collaborative Research Support Program. The accuracy, reliability, and originality of the work presented are the responsibility of the individual authors.

THANK YOU!

ON STAT

888

