Controlled Environment Systems
ABE 483/583

Course Description: An introduction to the technical aspects of greenhouse design, environmental control, hydroponic crop production, plant nutrient delivery systems, and intensive field production systems.

Class meeting: Tuesday 1:00 – 2:50 Lecture and Laboratory; Thursday 1:00 – 1:50 Lecture CEA Building & Greenhouses, Campbell Ave. & Roger Road

Instructor information:
Dr. Gene A. Giacomelli, Professor & Director Controlled Environment Agriculture Center, Department of Agricultural and Biosystems Engineering, Shantz Building, Room 504, cell phone 520 990-0202, and CEA Building, Room 101, 1951 E. Roger Road, Ph: 520 626-9566. Office hours: by arrangement via email giacomel@ag.arizona.edu

Grading Policy:

<table>
<thead>
<tr>
<th></th>
<th>undergraduate</th>
<th>graduate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assigned homework</td>
<td>10%</td>
<td>5%</td>
</tr>
<tr>
<td>Mid-term exam</td>
<td>30%</td>
<td>25%</td>
</tr>
<tr>
<td>Laboratory assignments & Quiz</td>
<td>25%</td>
<td>25%</td>
</tr>
<tr>
<td>Final exam</td>
<td>35%</td>
<td>25%</td>
</tr>
<tr>
<td>Design project</td>
<td>0%</td>
<td>20%</td>
</tr>
</tbody>
</table>

Grading scale: A=90-100, B=84-89, C=78-83, D=72-78, E=66-71, F=less than 66

Assignments generally due 1 week from being assigned; 3 Credits

Attendance policy: attendance important to obtain complete understanding of the course materials. Notes will be provided, and lecture will follow notes, but will include discussion on handouts, problem examples, and on textbook and reference readings. Provide knowledge of any planned/required absences by email.

Additional references, texts and journal publications assigned as supplemental reading.
- NRAES-33, Aldrich and Bartok, "Greenhouse Engineering"
- ACME, The Greenhouse Climate Control Book
- NRAES-4, Trickle Irrigation
- NRAES-56, Water and Nutrient Management for Greenhouses
- NRAES-3, Energy Conservation for Commercial Greenhouses
- E-130, Environmental Control of Greenhouses
- E-208, Soil Heating Systems for Greenhouse Crop Production

Journals: Proceedings of National Agricultural Plastics Conferences; International Society on Soilless Culture; ACTA Horticulturae; HortTechnology; Transactions of the ASAE
Syllabus Fall 2013
Controlled Environment Systems ABE 483/583
Dr. Gene A. Giacomelli
Professor & Director Controlled Environment Agriculture Center
Department of Agricultural and Biosystems Engineering
Shantz Building, Room 504, cell phone 520 990-0202
CEA Building, Room 101, 1951 E. Roger Road, Ph: 520 626-9566
giacomel@ag.arizona.edu

Dr Giacomelli
Overview of Intensive Crop Production and Controlled Environment Agricultural Systems
Greenhouse Structural Design, Glazings, Location, Orientation, Layout and Traffic Patterns
Environmental Control - Lighting, CO₂ – Enrichment
Environmental Control – Automated Systems
Environmental Control – Ventilation and Cooling
Environmental Control – Heating Systems
Environmental Control – Floor Heating
Energy Conservation Systems and Energy Sources
Integrated Crop Production Systems, Plant Culture Techniques, Nutrient Delivery Systems
Mechanization, Automation and Intelligent Mechanisms

Dr. Kacira
Environmental Control – Psychrometrics

Dr Waller / Dr Poe
Greenhouse Crop Production Systems – irrigation and fertigation

Lectures October 3rd & 8th, TBD, See Online videos
Special Lecture from Korea GreenSys2013, October 10th CEAC Classroom
Mid-Term EXAM Tuesday, October 22nd 1:00 – 2:50PM CEAC Classroom
Final EXAM Monday, December 16th 1:00 – 3:00PM CEAC Classroom

From the Textbook Greenhouses: Advanced Technology for protected Horticulture.
By Joe J. Hanan

Chapter 1: Overview of Intensive Crop Production and Controlled Environment Agricultural Systems
Chapter 2: Structures: Locations, Styles and Covers
Chapter 3: Radiation and Chapter 7, CO₂
Chapter 4: Temperature
Chapter 5: Psychrometrics (pgs. 271-276, 342-360)
Chapter 5: Water
Chapter 8: Climate Control
Course Objectives:
To learn the science and engineering aspects of controlled environment plant production systems [CEPPS].
To learn procedures, techniques and available resources for the design, evaluation, operation and general understanding of CEPPS.
To become familiar with the generalized processes and sub-systems of a CEPPS, including, crop production systems; nutrient delivery systems; microclimate heating, ventilation, cooling, humidifying, supplemental lighting and CO₂ enriching systems; monitoring and control systems; energy conservation and alternate energy systems; mechanization and labor management systems; glazing systems; and types of structures.
To appreciate the importance of integrating the biological aspects of plant production with engineering design for the successful operation of a CEPPS.

First Homework Assignment is shown below
Please return to Dr Giacomelli by email by September 3rd giacomel@ag.arizona.edu

Your description.......
Who are You? Why are You Here? Where are You going?

Name:
Program:
Year in Program:
Undergraduate/Graduate:
Preferred E-Mail:
 [this is very important as communication and class assignments will be provided by email!]
Phone [optional]:

Answer these 4 questions:
1. What are your goals and expectations for this class?
2. How will this class be important for your academic program and/or your future profession?
3. In your terms, as you now know and perceive, how you would describe:
 [1] a ‘plant’
4. Can you perceive how CEA (controlled environment agriculture) systems can be utilized to feed the world, improve the environment of the world, and create new worlds?
 If you have some thoughts on this, briefly explain.