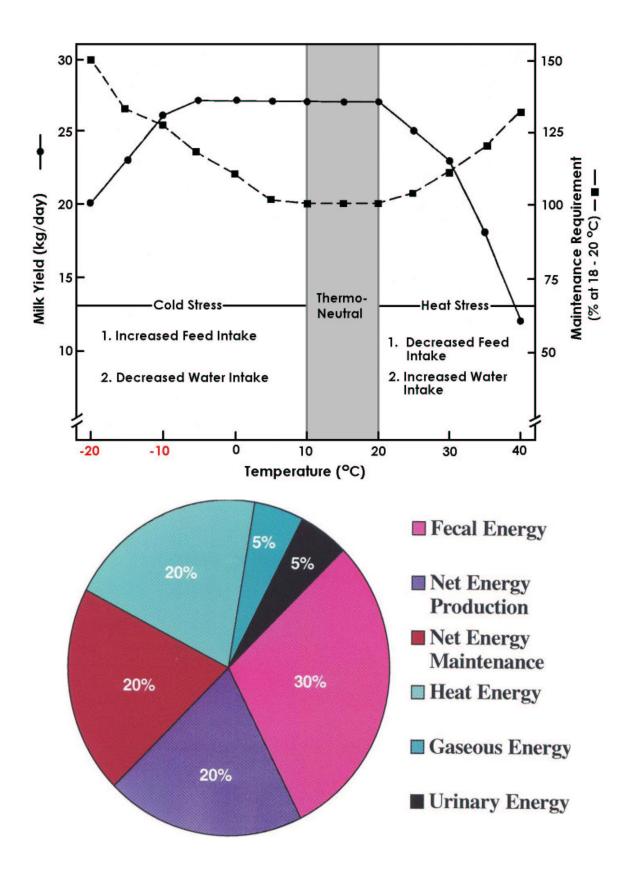
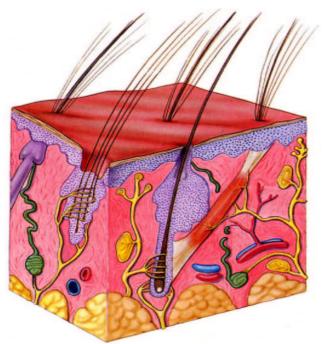
Metabolism ANS 215 Physiology and Anatomy of Domesticated Animals


I. Body Temperature

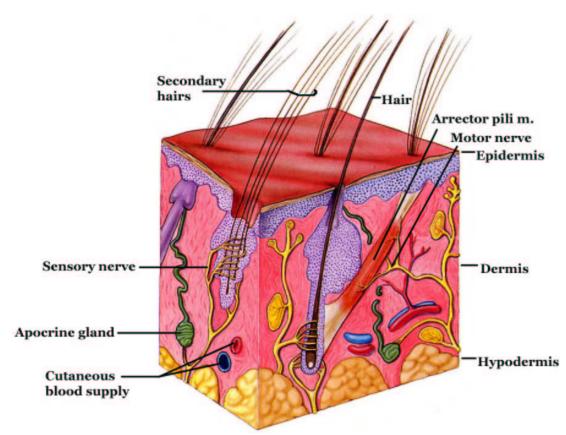
- A. Chemical reaction of the body and therefore body functions are affected by body temperature
 - 1. Each species has an associated average body temperature.

Animal	Average		Range	
	°C	°F	C°	°F
Stalion	37.6	99.7	37.2 - 38.1	99.0 - 100.6
Mare	37.8	100	37.3 - 38.2	99.1 - 100.8
Donkey	37.4	99.3	36.4 - 38.4	97.5 - 101.1
Camel	37.5	99.5	34.2 - 40.7	93.6 - 105.3
Beef cow	38.3	101	36.7 - 39.1	98.0 - 102.4
Dairy cow	38.6	101.5	38.0 - 39.3	100.4 - 102.8
Sheep	39.1	102.3	38.3 - 39.9	100.9 - 103.8
Goat	39.1	102.3	38.5 - 39.7	101.3 - 103.5
Pig	39.2	102.5	38.7 - 39.8	101.6 - 103.6
Dog	38.9	102	37.9 - 39.9	100.2 - 103.8
Cat	38.6	101.5	38.1 - 39.2	100.5 - 102.5
Rabbit	39.5	103.1	38.6 - 40.1	101.5 - 104.2
Chicken (daylight)	41.7	107.1	40.6 - 43.0	105.0 - 109.4

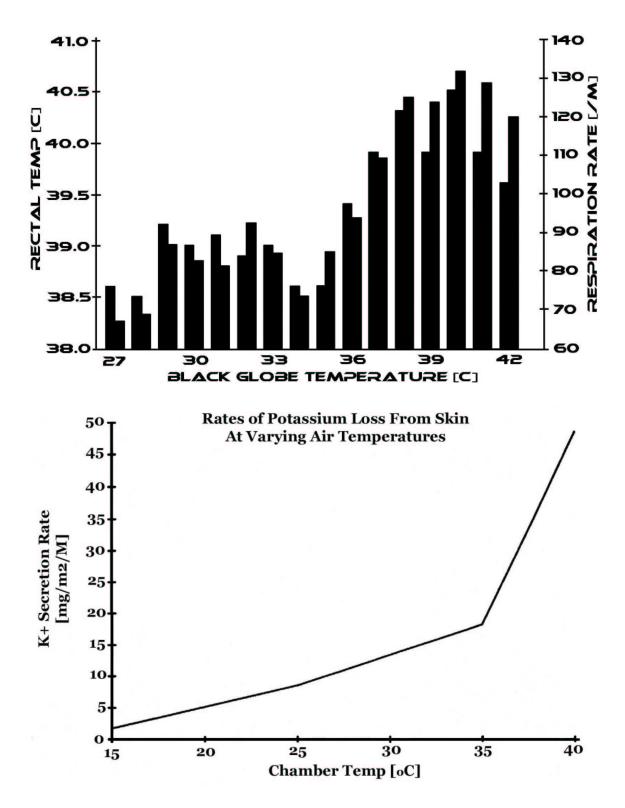
Average Rectal Temperatures of Various Species


- B. Factors influencing body temperature:
 - 1. basal metabolism resting heat production
 - 2. basal metabolic rate is not altered by temperatures within the thermoneutral zone (see diagram below)
 - 3. When environmental temperatures fall below or exceed the thermoneutral zone, the basal metabolic heat output rises.
 - 4. Increasing maintenance costs decreases profitability of raising farm animals.
- C. Methods of heat loss
 - 1. Conduction requires thermal gradient and physical contact
 - 2. Convection requires thermal gradient and movement of air or water over a surface
 - 3. Radiation requires a thermal gradient and moves at the speed of light
 - 4. Evaporation requires a vapor-pressure gradient and is favored when the other three routes of heat loss are compromised

- D. Total energy expenditure:
 - 1. 20% is lost as heat
 - 2. 20% utilized in maintenance
 - 3. 5% lost in gas production in digestive tract
 - 4. 5% lost in urinary excretion
 - 5. 20% utilized in productive processes
- E. Basal metabolism
 - 1. reflects the energy requirement for a given animal in the fasting and resting state
 - 2. can be calculated if body weight, surface area, and feed composition and quantity are know
- F. Total heat content
 - 1. If the body mass and temperature are known, then the total heat content of an animal can be calculated.
 - 2. Example: a dairy cow with body temp. of 38.5°C weighing 1200 lbs.
 - 1200 lbs. = 545.45 kg = 545450 g
 - 70% H₂O, so 0.70 x 545450g = 381.815 kcal
 - 30% dry matter with conductivity of 0.6 of H₂O, so
 - $0.30 \ge 0.60 \ge 163635 = 29.454$ kcal
 - Total heat contained = 793.084 kcal


II. Physiologic Responses to Heat and Cold

- A. Heat
 - 1. blood flow to skin surface is tightly regulated to control degree of heat loss
 - 2. vasodilation of surface vessels is maximal at upper critical temperature


Schematic section of skin. Note dogs have a more extensive network of blood vessels superior to the layer of adipose tissue.

- 3. Upper and lower critical temperatures are extreme points of the thermoneutral zone, where all physical means of adjusting body temperature have been exhausted.
- B. Evaporative heat loss
 - 1. increased by sweating and panting
 - a. two types of sweat glands
 - i. apocrine
 - found in horses, dogs, cattle, swine
 - composition of sweat varies among species
 - the horse is most prolific sweater
 - ii. eccrine
 - found in humans

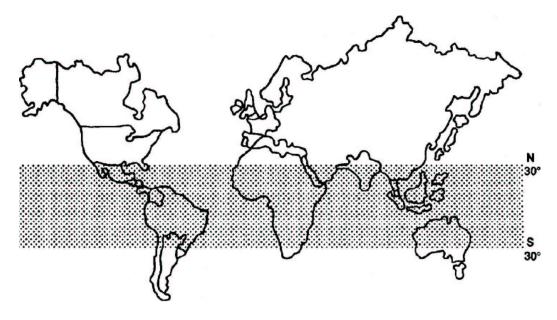
Labeled schematic representation of nerve supply and glands of the skin. Note sebaceous gland not drawn.

- b. Panting
 - i. common in domestic animals that sweat poorly
 - ii. comes at a high cost to productivity due to adverse effects on feed intake

B. Cold

1. vasoconstriction of blood vessels within the thermoneutral zone

2. activation of counter-current heat exchange mechanisms within the thermoneutral zone


- 3. piloerection
- 4. Increased heat production outside of the thermoneutral zone:
 - a. shivering thermogenesis
 - b. non-shivering thermogenesis brown adipose tissue
 - c. increased basal metabolism
 - i. increased feed intake

III. Escaping Environmental Extremes

- A. Hibernation
 - 1. process of war blooded animals
 - 2. radical decrease in basal metabolic rate
 - 3. body temperature drops
 - 4. animals spontaneously come out of hibernation
- B. Estivation
 - 1. similar to hibernation, but induced by heat and low water
 - 2. animals reduce metabolism until stress period is over
- C. Migration
 - 1. move to better environment for breeding purposes or to survive

IV. Abnormal Temperatures

- A. Fever altered hypothalamic set-point caused by bacterial endotoxins
 - 1. characterized by chills during period of temperature increase; when setpoint returns to normal, sweating is initiated
 - 2. hot flashes
 - a. altered set-point due to abnormally high concentrations of gonadotropin releasing hormone
 - 3. hyperthermia
 - a. caused by heat stress
 - 4. hypothermia
 - a. caused by cold stress

