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' RNR 613 — Introduction and Background

"There are three kinds of lies: lies, damned lies, and statistics"   — Benjamin Disraeli

What is (the study of) Statistics?  The study of methods to collect and interpret scientific information using
probability to address the uncertainty of this information.  

Why use Statistics?

Data Collection

• Collect data with minimum bias and maximum precision. ý Sampling Methods
• Design experiments in such a way as to maximize the chances of detecting biologically important effects
(i.e., with high statistical power = low Type II error rate) while controlling the chances of drawing incorrect
conclusions (low Type I error rate).  ý Experimental Design

Data Analysis

• Summarize scientific information.  ý Descriptive Statistics
• Estimate population parameters using sample data. ý Parameter Estimation
• Test hypotheses. ý Inferential Statistics

Definitions

• Population — The entire collection of entities about which one wishes to make an inference or draw a conclusion
about (also called aggregate or universe). 

• Sample — A subset of a population.  Used because we usually cannot measure all individuals in a population. 
It is the sample we observe, but the population we wish to know.  

• Simple Random Sample — A sample of size n from a larger population selected in such a way that every
sample of size n has the same chance of being selected. 

• Parameter — The true value of some population attribute, which is almost always unknown; or an unknown
constant that describes a key feature in a model for answering a question of interest.  Parameters
are often represented by Greek letters, such as : for the population mean, and F for the population
standard deviation. 

• Statistic — Any quantity that is computed or estimated from sample observations.  Statistics or estimates are
represented by Roman letters, such as Y6  for sample mean and s for sample standard deviation;
statistics are sometimes distinguished from the parameter they estimate by a “hat,” such as *

$
. 

• Probability — Set of mathematical tools to quantify concepts we understand intuitively, such as “likelihood”,
“predictability”,and “certainty.”  We use probability to gauge the amount of confidence to place on
sample estimates.  

• Model — Some approximation of reality.  
• Statistical model — A mathematical expression that help us predict a response variable as a function of one or

more explanatory variables, based on a set of assumptions.  These assumptions allow the
model not to fit exactly, and are made about random terms in the model called error (,).  

E.g., use sample data to develop a statistical model to predict how a response variable (say, nestling mass)
varies with changes in an explanatory variable (say, nestling age):  y = b0 + b1x + ,, where y represents
nestling mass, b0 and b1 are estimates of model parameters for intercept ($0) and slope ($1) that describe
the line fit using sample data; , represents random error = that portion of observed data that the model does
not describe exactly. 

Assessing Model Appropriateness and Model Fit

Strive for “acceptable” model fit; examine assumptions of a particular model with the data collected to
determine if they are met reasonably.  We will choose models based on the context (data type and sampling
or experimental design) then use graphical tools to determine the chosen model’s appropriateness.  
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' RNR 613 — Variables, Data Tables

Statistics — Study of methods to collect and interpret scientific information using probability as the foundation by
which to address the uncertainty of this information.  

• Types of Variables (or in JMP-speak, modeling type)

Continuous—Data values for a variable are measured on a continuous scale.  E.g., body mass is often
measured and recorded on a continuous scale, where values such as 40 g or 3,154.2 g are acceptable.  It can be
useful to distinguish between continuous and discrete data.  Continuous data can be represented with any and all
conceivable values within a particular range, such as the height of a plant being 36.354 cm; discrete data (or
meristic data) can be represented by only certain values within a particular range, such as number of leaves on a
plant, where 22, 185, or 45 are possible, but 22.8 is not.  Count data are discrete but sometimes can be modeled as
continuous.  

Ordinal—Data values for a variable are labels identifying a category and their order is meaningful.  E.g., a
person’s highest educational level might be recorded ordinal, where the categories of interest might be grade
school, high school, college, and graduate school.  Another way to view these data is as rank ordered, where the
actual values for the variables are compressed into meaningful (but probably somewhat arbitrary) categories.  What
often is recorded as ordinal data may have been recorded as continuous data if measurements were made more
precisely.  E.g., we could replace education level above with the actual number of years a person spent in school,
and then model the variable as continuous (and discrete).  

Nominal—When data values for a variable are labels identifying a category and their order is not
meaningful.  E.g., attributes such as color are nominal (meaning named) because the categories do not represent
some underlying, quantitative scale.  Although colors such as blue, red, and yellow are different (which is usually
what we are interest in), they are not quantitatively different from each other (i.e., order of categories has no
particular meaning).  

As mentioned above, It is sometimes possible to consider certain variables as more than one type.  For
example, if age is measured in years, you might consider age to be either continuous or ordinal.  In these cases
there is not a right or wrong way to model the variable; however, there may be certain advantages to one approach
over another.  What is critical, however, is to note when there is order in data that are categorical in nature. 
Considering something nominal when it is really ordinal can result in a less efficient analysis or result in limiting
yourself to fewer modeling options. 

• Creating Data Tables that Facilitate Analysis

One obstacle to efficient data analysis exists when data not organized carefully within a statistical software’s
spreadsheet.  By considering carefully the best way in which to enter data, analyses are facilitated.  Almost all
software packages handle a dataset as a matrix of rows and columns.  Typically, each observation or sample
becomes a row in a data table and each attribute or measurement associated with that observation becomes a
column.  E.g., you are studying 5 attributes of 3 different plant species from 2 geographic regions.  You have taken
measurements of all attributes from 10 individuals of each species in each region.  Your data table should have
7 columns (species, region, attrib1-attrib5) and 60 rows (3 species x 2 regions x 10 individuals = 60).

There are plenty of circumstances when this approach will not work, most commonly when you measure the
same individual (sampling or experimental unit) more than once, which you might do for at least 2 reasons: 
(1) sampling units are highly variable, so you must take multiple measurements to reduce sampling variability
(subsampling), or (2) your design call for repeatedly measuring the same units through time (repeated measures).

You then have 2 alternatives.  First, you can add a column to identify uniquely each sample/ experimental
unit and include a complete set of measurements (rows) for each subsample.  E.g., you have 20 field plots where
you measured a set of attributes, but because the plots are large, so you take 3 subsamples per plot.  Your dataset
would then have 20 plots x 3 subplots/plot = 60 rows.  Second, you could create additional columns for all
measurement within a sample.  So if you measured 3 attributes in the above scenario with 3 subsamples per plot,
you would have 3 attributes x 3 subsamples, or 9 columns and 20 rows.  


