ENTO / RNR 613 – Inferential Tools for Multiple Regression

T-tests are useful for making inferences about the value of *individual* regression coefficients. These regression coefficients describe the *association* between the mean response (Y) and a series of X's. They are used for both hypothesis testing and confidence interval building.

Another approach is available for making inferences about regression parameters: *partial F-tests*, also called *Extra-Sum-of-Squares F-tests*. Extra-Sum-of-Squares F-tests provide much flexibility for hypothesis testing. They can be used 1) to test the effect of a *group* of explanatory variables, and 2) to measure the contribution of one or more explanatory variables to explanation of the variation in the response variable.

Example: Some bats use echolocation to orient themselves with respect to their surroundings. To assess whether sound production is energetically costly, in-flight energy expenditure was measured in 4 non-echolocating bats, 12 non-echolocating birds, and 4 echolocating bats.

Is in-flight energy requirement different between non-echolocating bats and echolocating bats?

<u>First</u>, we need to choose an inferential model to answer that question. For sake of simplicity, we start with a parallel lines regression model, using as a *reference* <u>non-echolocating</u> bats:

$$\mu\{lenergy \mid lmass, TYPE\} = \beta_0 + \beta_1 lmass + \beta_2 bird + \beta_3 ebat$$

(An abbreviation to indicate a categorical explanatory variable to be modeled with indicator variable is to write that variable in uppercase. To save space, the model could simply be described as: μ {lenergy | lmass, TYPE } = lmass + TYPE

<<Display 10.5>>

Phrased in term of regression coefficients, our question is $\beta_3 = 0$?

Specifics of the above model:

a) The dummy variable *bird* = 1 for birds, 0 otherwise (create a column in JMP).
b) The dummy variable *ebat* = 1 for echolocating bat, 0 otherwise (another column).
c) The data were log transformed (non-linearity and non-constant variance of the responses).

We first fit the above model to check for need for *transformations*, *outliers*, etc.... (we will see later that the choice of a first model depends on sample size).

But <u>before</u> using this model, we must also fit a rich model to assess whether the lines are truly parallel (Lack-of-Fit test is not useful here because there are no replicates at the levels of lmass):

 $\mu\{\text{lenergy} \mid \text{lmass}, \text{TYPE}\} = \beta_0 + \beta_1 \text{lmass} + \beta_2 \text{bird} + \beta_3 \text{ebat} + \beta_4 (\text{lmass} \times \text{bird}) + \beta_5 (\text{lmass} \times \text{ebat})$

The lines are parallel if both $\beta_4 = 0$ and $\beta_5 = 0$.

T-tests cannot be used as before (e.g. linear contrasts in ANOVA) to test hypotheses involving *more than one* regression coefficient. This is because the estimates of the regression coefficients included in a model are *not statistically independent* (the estimate of a regression coefficient depends on the presence of the other coefficients in the model). This lack of independence complicates estimation of the SE required for drawing inferences on a combination of regression coefficients with a t-test procedure (calculation of the SE is based on the variance of, and covariance between, the coefficients: see Sleuth p. 288-289).

But the extra-sum-of-squares method (also called partial F-tests) is perfect for testing whether *several* coefficients are all zero.

Recall that:

Extra SS = SS _{res} from *reduced* model – SS _{res} from *full* model, (i.e. we use the "Error" SS from the ANOVA tables)

= Variation unexplained by reduced model – variation unexplained by full model

= Extra variation in the response (Y) explained by the full model

The F-statistic for the extra SS is:

$$F - statistic = \frac{\left[\frac{Extra \ sum \ of \ squares}{Number \ of \ betas \ being \ tested}\right]}{Estimate \ of \ \sigma^2 \ from \ full \ model}$$

Here we have:

Full model:

$$\mu$$
{lenergy | lmass, TYPE} = $\beta_0 + \beta_1$ lmass + β_2 bird + β_3 ebat +
 β_4 (lmass × bird) + β_5 (lmass × ebat)

$\frac{\text{Reduced model:}}{\mu\{\text{lenergy} \mid \text{lmass}, \text{TYPE}\}} = \beta_0 + \beta_1 \text{lmass} + \beta_2 \text{bird} + \beta_3 \text{ebat}$

ANOVA Table for the Full Model: 6 coefficients

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	5	29.469932	5.89399	163.4404
Error	14	0.504868	$0.03606~(s^2)$	Prob>F
C Total	19	29.974800		<.0001

ANOVA Table for the Reduced Model: 4 coefficients

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	3	29.421483	9.80716	283.5887
Error	16	0.553318	0.03458	Prob>F
C Total	19	29.974800		<.0001

Extra SS = 0.5533 - 0.5049 = 0.0484Number of betas tested. = 6-4 = 2Extra SS F-test = (0.0484/2) / 0.0361 = 0.672 with 2, 14 d.f.

Numerator d.f. = no of coefficient tested; denominator d.f. is from s^2 (Error MS) of full model

F _{2, 14} = 0.672 yields P = 0.53, so there is no evidence that the association between energy expenditure and body size differs among the three types of flying vertebrates (i.e., there is no significant interaction between Body mass and flying type).

** Extra-sum-of-squares tests are useful to select appropriate inferential models **

Extra-sum-of-squares test for interaction term is done directly in JMP:

Fit Model (with indicator variables):

lenergy = lmass + bird + ebat + lmass*bird + lmass*ebat.

Parameter Estimates									
Term	Estimate	Std Error	t Ratio	Prob> t					
Intercept	-0.202448	1.261334	-0.16	0.8748					
Imass	0.5897821	0.206138	2.86	0.0126					
bird	-1.37839	1.295241	-1.06	0.3053					
ebat	-1.268068	1.28542	-0.99	0.3406					
bird X Imass	0.2455883	0.213432	1.15	0.2691					
ebat X Imass	0.214875	0.223623	0.96	0.3529					

Effect Tests

Nparm	DF	Sum of Squares	F Ratio	Prob > F
1	1	0.29520027	8.1859	0.0126
1	1	0.04084066	1.1325	0.3053
1	1	0.03509494	0.9732	0.3406
1	1	0.04774690	1.3240	0.2691
1	1	0.03329584	0.9233	0.3529
	Nparm 1 1 1 1 1	Nparm DF 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NparmDFSum of Squares110.29520027110.04084066110.03509494110.04774690110.03329584	NparmDFSum of SquaresF Ratio110.295200278.1859110.040840661.1325110.035094940.9732110.047746901.3240110.033295840.9233

Fit Model (without indicator variables):

lenergy = lmass + TYPE + lmass*TYPE

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-1.0846	0.439569	-2.47	0.0271
Imass	0.7432698	0.076788	9.68	<.0001
type[1]	0.1322889	0.19371	0.68	0.5058
type[2]	-0.046281	0.121225	-0.38	0.7084
type[1]*(Imass-4.8855)	-0.153488	0.141636	-1.08	0.2968
type[2]*(Imass-4.8855)	0.0921005	0.083166	1.11	0.2868
Effect Tests				

Source	Nparm	DF	Sum of Squares	F Ratio	Prob > F
Imass	1	1	3.3787539	93.6929	<.0001
type	2	2	0.0169252	0.2347	0.7939
type*Imass	2	2	0.0484495	0.6718	0.5265

The Extra SS test comparing models with and without interaction done by hand yielded F $_{2, 14} = 0.672$ and P = 0.53, as in the Table for effect tests above.

So the parallel lines model seems reasonable:

$$\mu\{lenergy \mid lmass, TYPE\} = \beta_0 + \beta_1 lmass + \beta_2 bird + \beta_3 ebat$$

The question of interest is: $\beta_3 = 0$?

Par amet er	Estimates			
Ter m	Estimate	Std Error	t Ratio	Prob> t
Intercept	- 1. 57636	0.287236	- 5.49	<. 0001
lmass	0.8149575	0.044541	18.30	<. 0001
bi r d	0. 1022619	0.114183	0.90	0. 3837
ebat	0. 0786637	0.202679	0.39	0. 7030
Cour	0.0100001	0.2020/0	0.00	0.7000

The two-sided p-value for the coefficient of *ebat* is 0.7030. This provides no evidence that β_3 is different from 0.

When a test yields a large p-value, it is *always possible* that the study was not powerful enough to detect a meaningful relationship.

Reporting a 95% CI emphasizes the fact that *power of the test may have been low* and provides a set of likely values for β_{3} .

The 95 % CIs for the regression coefficients on the transformed scale are: (JMP calculates this)

Term	Lower 95%	Upper 95%
Intercept	-2.185271	-0.967449
lmass	0.7205344	0.9093806
bird	-0.139793	0.3443171
ebat	-0.350995	0.5083224

The median in-flight energy expenditure is $exp(\beta_3)$ times (i.e. 1.08 times) as great for echolocating bats as it is for non-echolocating bats *of similar body mass*. The 95% CI is obtained by taking the anti-log of the endpoints of the CI on the transformed scale: Exp (-0.351) = 0.70 to exp (0.508) = 1.66.

Note: the Dummy variable *ebat* was not log transformed, so obtaining an interpretation for its coefficient on the untransformed scale only considers the fact that Y was log transformed.

Another question: Is there variation in flight energy expenditure among the three vertebrate types?

We compare the following 2 models:

<u>Full model</u>: (parallel lines: 4 parameters) μ {lenergy | lmass, TYPE} = $\beta_0 + \beta_1 lmass + \beta_2 bird + \beta_3 ebat$

<u>Reduced model</u>: (common line: 2 parameters) μ {lenergy | lmass} = $\beta_0 + \beta_1$ lmass

Extra SS = 0.58289 - 0.55332 = 0.02957Number of Betas tested = 4 - 2 = 2 $s^2 = 0.03459$ (from full model) F-statistic = (0.2957/2) / 0.03458 = 0.428, so p-value for F = 0.428 with 2, 16 d.f. is 0.66.

Conclusion: There is no evidence that the mean log energy differs among birds, echolocating bats, and non-echolocating bats, after accounting for body mass (p-value = 0.66; extra-sums-of-squares F-test).

The single-line model is therefore adequate to describe the data in this problem.

Contribution of a single variable: R² as a tool for building inferential models

The R-squared statistic is a valuable *descriptor* of the fit of a model.

It is calculated as:
$$\mathbf{R}^2 = \frac{Total \ SS - Residual \ SS}{Total \ SS} \times 100\%$$

It measures the *amount of total variation in the response variable* that is explained by the regression on the explanatory variables.

Example: Galileo measured horizontal distance covered by a bronze ball released at different heights from an inclined plane on a table. Regression can be used to describe the horizontal distance traveled, which would help figuring the type of trajectory taken by the ball.

A quadratic regression model: Distance = 199.91 + 0.71 Height – 0.00034 Height²

Summary of Fit	Analysis of	Varia	nce			
RSquar e	0.990339	Source	DF	Sum of Squares	Mean Square	FRatio
RSquare Adj	0.985509	Model	2	76277 922	38139.0	205 0267
Root Mean Square Error	13. 6389	-	-		00100.0	200.0207
Mean of Response	434	Error	4	744. 078	186. 0	Pr ob⊳F
Observations (or Sum Worts)	ļ	C Tot al	6	77022.000		<. 0001

Estimates			
Estimate	Std Error	t Ratio	Prob> t
199. 91282	16. 75945	11.93	0.0003
0. 7083225	0.074823	9.47	0.0007
- 0. 000344	0.000067	- 5. 15	0. 0068
	Estimates Estimate 199.91282 0.7083225 -0.000344	Estimates Estimate StdError 199.91282 16.75945 0.7083225 0.074823 -0.000344 0.000067	Estimates Estimate Std Error t Ratio 199.91282 16.75945 11.93 0.7083225 0.074823 9.47 -0.000344 0.000067 -5.15

Both the quadratic and linear coefficients are different from 0. From the ANOVA table, we find that the R-square is $(76277.9 / 77022) \times 100 \% = 99.03\%$. The fit of the model is very good.

<<Display 10.2>> Do we need a cubic term in the model?

Par amet er	Estimates				Summary of Fit	
Ter m	Estimate	Std Error	t Ratio	Prob> t	RSquar e	0.999374
Intercept	155. 77551	8. 32579	18.71	0.0003	RSquare Adj	0.998747
hei ght	1.115298	0.065671	16.98	0.0004	Root Mean Square Error	4.010556
height 2	- 0.001245	0.000138	- 8.99	0.0029	Mean of Response	434
height 3	0.0000005	8.327 e -8	6.58	0.0072	Observations (or Sum Wgts)	

Anal ysis of	Varian	ce			
Source	DF	Sum of	Squares	Mean Square	FRatio
Model	3	-	76973. 746	25657.9	1595. 189
Error	3		48. 254	16. 1	Pr ob⊳F
C Tot al	6	-	77022.000		<. 0001

The p-value for the coefficient of height-cubed provides evidence that the cubic term is different from 0. But how much more variability in the response variable does it explain?

The extra amount of variation explained in the response variable arising from addition of the cubic term is:

Extra sum of squares = SS_{res} from reduced model – SS_{res} from full model = Unexplained by reduced model – unexplained by full =744.078 – 48.254 = 695.824

This only represents an increase of $(695.824 / 77022.00) \times 100 \% = 0.903 \%$ in amount of total variation in the response variable explained by the new model.

The percentage of the total variation in the response variable *not explained* by the quadratic model was $100 - (0.990339 \times 100) = 0.966 \%$).

So the **cubic term** explains a significant proportion of the *remaining variability from the reduced quadratic model* (0.903/0.966 = 93.5 % of the remaining variability). But the gain in term of total variation explained is small compared to what was accomplished by the quadratic model (i.e. about 1%).

When should quadratic (or higher order terms) be included in the model?

They should not be routinely included, and are useful in 4 situations:

- 1) When there are good reasons to suspect the response to be non-linear
- 2) When we search for an optimum or minimum
- 3) When precise predictions are needed (presumably few explanatory variables are used)
- 4) To produce a rich model for assessing the fit of an inferential one.

When should an Interaction term be included?

Not routinely. Inclusion is indicated:

- 1) When the question of interest pertains to interactions
- 2) When good reasons exist to suspect interactions
- 3) When assessing the fit of an inferential model

Occam's Razor again

 R^2 can *always be made greater* by adding explanatory variables. For example fluctuation in the Dow Jones Index during nine days in June 1994 was predicted with the following seven explanatory variables:

high temperature in NY city on the previous day; low temperature on the previous day; an indicator variable equal to 1 if the forecast for the day was sunny and 0 otherwise; an indicator variable equal to 1 if the New York Yankees won their baseball game on the previous day and 0 otherwise;

the number of runs the Yankee scored;

an indicator variable equal to 1 if the new York Mets won their baseball game on the previous day and 0 if not;

the number of runs the Mets scored.

The R^2 of the model was 89.6 %. Would you use this model to invest in stocks? I hope not! The model used 7 variables to explain variation in 9 data points. The model fitted well because there were almost as many variables as observations. That *particular* equation fits well but would be very unlikely to fit future data.

Foundation for the Occam's Razor principle: *Simple models* that adequately explain the data are more likely to have predictive power than complex models that are more likely to fit the data without reflecting any real associations between the variables. This should be kept in mind when deciding whether to keep quadratic (or higher order) terms and interactions in inferential models.

· · · · · · · · · · · · · · · · · · ·			_	
Summary of Fi	t			
RSquar e		0.966228		
RSquare Adj Root Mean Square Error Mean of Response		0.729821		
		15. 98882	2 3	
		58. 77778		
Observations (or Sum Wgts)			9	
Par amet er Est	imates			
Ter m	Estimate	Std Error	t Ratio	Prob> t
Intercept	17.617805	41. 79174	0.42	0.7460
HighT	5. 1361639	4.059363	1.27	0. 4258
LowT	- 5.699337	4.944225	- 1. 15	0. 4549
Sun	71.085717	23. 39164	3.04	0. 2024
Yank	25. 81683	20.4658	1.26	0. 4267
Yank Score	4. 44963	3.665936	1.21	0. 4387
Mets	- 35. 30382	30. 22017	- 1. 17	0. 4507
MetsRuns	- 8.082005	5.428728	- 1. 49	0. 3765

Example: Predicting Stock prices with 7 arbitrarily chosen variables (I had to try it for myself!). Response: St ock

Adjusted R-square Statistic

The adjusted R-square includes a penalty for unnecessary explanatory variables. It measures the proportion of the variation in the responses explained by the regression model, but this time the residual **mean squares** rather than the residual sums of squares are used:

Adjusted
$$R^2 = 100 \frac{(Total mean square) - (Residual mean square)}{Total mean square} \%$$

With increased number of regression coefficients included in the model, the Residual SS always decline, so the **R-squared statistic** always increases.

However for the **Adjusted R**², the number of d.f. associated with the *Residual mean* square is n - #betas [Residual mean square = Residual SS / (n - #betas)]. This tends to increase the value of the residual MS when factors included in the model do not account for much of the variation in the response variable. On the other hand, the *Total mean* square does not change when more factors are included in a model.

Thus, an increase in the number of "useless" regression coefficients in a model increases the discrepancy between the **adjusted** \mathbf{R}^2 and the **R-squared**. The adjusted \mathbf{R}^2 is useful for **casual assessment** of improvement of fit: factors that increase the difference between \mathbf{R}^2 and Adjusted \mathbf{R}^2 would in general be less useful in a model.

 R^2 is a better **descriptor** than adjusted R^2 of the total variation in the response variable explained by a model.

Still the Adjusted R^2 in the above model is 73.0 %. This illustrates that R-squared is a difficult statistic to use for model checking, model comparison, or inference.