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ENTO / RNR 613 – Inferential Tools for Multiple Regression__________________ 
 
T-tests are useful for making inferences about the value of individual regression 
coefficients.  These regression coefficients describe the association between the mean 
response (Y) and a series of X’s.  They are used for both hypothesis testing and 
confidence interval building. 
 
Another approach is available for making inferences about regression parameters: partial 
F-tests, also called Extra-Sum-of-Squares F-tests.  Extra-Sum-of-Squares F-tests provide 
much flexibility for hypothesis testing.  They can be used 1) to test the effect of a group 
of explanatory variables, and 2) to measure the contribution of one or more explanatory 
variables to explanation of the variation in the response variable.  
 
Example:  Some bats use echolocation to orient themselves with respect to their 
surroundings.  To assess whether sound production is energetically costly, in-flight 
energy expenditure was measured in 4 non-echolocating bats, 12 non-echolocating birds, 
and 4 echolocating bats.   
 
Is in-flight energy requirement different between non-echolocating bats and echolocating 
bats? 
 
First, we need to choose an inferential model to answer that question.  For sake of 
simplicity, we start with a parallel lines regression model, using as a reference non-
echolocating bats: 
 
{ } ebatbirdlmassTYPElmasslenergy ββββμ

3210
,| +++=  

 
(An abbreviation to indicate a categorical explanatory variable to be modeled with 
indicator variable is to write that variable in uppercase.  To save space, the model could 
simply be described as: }{ TYPElmassTYPElmasslenergy +=,|μ  
 
<<Display 10.5>> 
 
Phrased in term of regression coefficients, our question is 0

3
=β  ?   

 
Specifics of the above model: 
 
a) The dummy variable bird = 1 for birds, 0 otherwise (create a column in JMP). 
b) The dummy variable ebat = 1 for echolocating bat, 0 otherwise (another column). 
c) The data were log transformed (non-linearity and non-constant variance of the 
responses). 
 
We first fit the above model to check for need for transformations, outliers, etc….. (we 
will see later that the choice of a first model depends on sample size). 
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But before using this model, we must also fit a rich model to assess whether the lines are 
truly parallel (Lack-of-Fit test is not useful here because there are no replicates at the 
levels of lmass): 
 
{ }
( ) ( )ebat lmassbirdlmass

ebatbirdlmassTYPElmasslenergy
×+×

++++=

ββ
ββββμ

54

3210
,|

 

 
The lines are parallel if both 0

4
=β  and 0

5
=β . 

 
T-tests cannot be used as before (e.g. linear contrasts in ANOVA) to test hypotheses 
involving more than one regression coefficient.  This is because the estimates of the 
regression coefficients included in a model are not statistically independent (the estimate 
of a regression coefficient depends on the presence of the other coefficients in the 
model).  This lack of independence complicates estimation of the SE required for 
drawing inferences on a combination of regression coefficients with a t-test procedure 
(calculation of the SE is based on the variance of, and covariance between, the 
coefficients: see Sleuth p. 288-289).  
 
But the extra-sum-of-squares method (also called partial F-tests) is perfect for testing 
whether several coefficients are all zero. 
 
Recall that:   
 
Extra SS = SS res from reduced model – SS res from full model, (i.e. we use the “Error” SS 

from the ANOVA tables) 
    = Variation unexplained by reduced model – variation unexplained by full 

model 
   = Extra variation in the response (Y) explained by the full model 
 

 
The F-statistic for the extra SS is: 
 

  
model full fromof Estimate

tested being betas of Number
 squaresof  sumExtra

statistic-F
2σ

⎥
⎦

⎤
⎢
⎣

⎡

=  

Here we have: 
 
Full model:  
{ }
( ) ( )ebatlmassbirdlmass

ebatbirdlmassTYPElmasslenergy
×+×

++++=

ββ
ββββμ

54

3210
,|
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Reduced model: 
{ } ebatbirdlmassTYPElmasslenergy ββββμ

3210
,| +++=  

 
ANOVA Table for the Full Model:  6 coefficients 
 
Source  DF  Sum of Squares Mean Square  F Ratio 
Model  5  29.469932  5.89399  163.4404 
Error  14  0.504868  0.03606 (s2)  Prob>F 
C Total 19  29.974800     <.0001 
 
ANOVA Table for the Reduced Model:  4 coefficients 
 
Source  DF  Sum of Squares Mean Square  F Ratio 
Model  3  29.421483  9.80716  283.5887 
Error  16  0.553318  0.03458  Prob>F 
C Total 19  29.974800     <.0001 
 
Extra SS = 0.5533 – 0.5049 = 0.0484 
Number of betas tested. = 6-4 = 2 
Extra SS F-test = (0.0484/2) / 0.0361 = 0.672 with 2, 14 d.f. 
 
Numerator d.f. = no of coefficient tested; denominator d.f. is from s2 (Error MS) of full 
model 
 
F 2, 14 = 0.672 yields P = 0.53, so there is no evidence that the association between energy 
expenditure and body size differs among the three types of flying vertebrates (i.e., there is 
no significant interaction between Body mass and flying type). 
 
** Extra-sum-of-squares tests are useful to select appropriate inferential models ** 
 
 
Extra-sum-of-squares test for interaction term is done directly in JMP: 
 
Fit Model (with indicator variables): 
 
lenergy = lmass + bird + ebat + lmass*bird + lmass*ebat.  
 
Parameter Estimates 
Term  Estimate Std Error t Ratio Prob>|t|
Intercept  -0.202448 1.261334 -0.16 0.8748 
lmass  0.5897821 0.206138 2.86 0.0126 
bird  -1.37839 1.295241 -1.06 0.3053 
ebat  -1.268068 1.28542 -0.99 0.3406 
bird X lmass  0.2455883 0.213432 1.15 0.2691 
ebat X lmass  0.214875 0.223623 0.96 0.3529 
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Effect Tests 
Source Nparm DF Sum of Squares F Ratio Prob > F   
lmass 1 1 0.29520027 8.1859 0.0126  
bird 1 1 0.04084066 1.1325 0.3053  
ebat 1 1 0.03509494 0.9732 0.3406  
bird X lmass 1 1 0.04774690 1.3240 0.2691  
(ebat X lmass 1 1 0.03329584 0.9233 0.3529  
 
 
Fit Model (without indicator variables): 
 
 lenergy = lmass + TYPE + lmass*TYPE  
 
Parameter Estimates 
Term   Estimate Std Error t Ratio Prob>|t| 
Intercept  -1.0846 0.439569 -2.47 0.0271 
lmass  0.7432698 0.076788 9.68 <.0001 
type[1]  0.1322889 0.19371 0.68 0.5058 
type[2]  -0.046281 0.121225 -0.38 0.7084 
type[1]*(lmass-4.8855)  -0.153488 0.141636 -1.08 0.2968 
type[2]*(lmass-4.8855)  0.0921005 0.083166 1.11 0.2868 
 
Effect Tests 
Source Nparm DF Sum of Squares F Ratio Prob > F   
lmass 1 1 3.3787539 93.6929 <.0001  
type 2 2 0.0169252 0.2347 0.7939  
type*lmass 2 2 0.0484495 0.6718 0.5265  
 
The Extra SS test comparing models with and without interaction done by hand yielded F 
2, 14 = 0.672 and P = 0.53, as in the Table for effect tests above. 
 
 
So the parallel lines model seems reasonable:  
 
{ } ebatbirdlmassTYPElmasslenergy ββββμ

3210
,| +++=  

 
The question of interest is: 0

3
=β  ? 

 
 
 
 
 
 
 

Par amet er  Est i mat es

Ter m
I nt er cept
l mass
bi r d
ebat

Est i mat e
 - 1. 57636

0. 8149575
0. 1022619
0. 0786637

St d Er ror
0. 287236
0. 044541
0. 114183
0. 202679

t  Rat i o
 - 5. 49
 18. 30
  0. 90
  0. 39

Prob>| t |
<. 0001
<. 0001
0. 3837
0. 7030
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The two-sided p-value for the coefficient of ebat is 0.7030.  This provides no evidence 
that β3 is different from 0. 
 
When a test yields a large p-value, it is always possible that the study was not powerful 
enough to detect a meaningful relationship.   
 
Reporting a 95% CI emphasizes the fact that power of the test may have been low and 
provides a set of likely values for β3. 

 
The 95 % CIs for the regression coefficients on the transformed scale are: (JMP 
calculates this) 
 
Term  Lower 95% Upper 95%  
Intercept -2.185271 -0.967449  
lmass  0.7205344 0.9093806  
bird  -0.139793 0.3443171  
ebat  -0.350995 0.5083224  
 
The median in-flight energy expenditure is exp(β3) times (i.e. 1.08 times) as great for 
echolocating bats as it is for non-echolocating bats of similar body mass.  The 95% CI is 
obtained by taking the anti-log of the endpoints of the CI on the transformed scale: Exp (-
0.351) = 0.70 to exp (0.508) = 1.66. 
 
Note: the Dummy variable ebat was not log transformed, so obtaining an interpretation 
for its coefficient on the untransformed scale only considers the fact that Y was log 
transformed. 
 
Another question:  Is there variation in flight energy expenditure among the three 
vertebrate types? 
 
We compare the following 2 models: 
 
Full model: (parallel lines: 4 parameters) 
{ } ebatbirdlmassTYPElmasslenergy ββββμ

3210
,| +++=  

 
Reduced model: (common line: 2 parameters) 
{ } lmasslmasslenergy ββμ

10
| +=  

 
Extra SS = 0.58289 – 0.55332 = 0.02957 
Number of Betas tested = 4 - 2 = 2 
 s2 = 0.03459 (from full model) 
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F-statistic = (0.2957/2) / 0.03458 = 0.428, so p-value for F = 0.428 with 2, 16 d.f. is 0.66. 
 
Conclusion:  There is no evidence that the mean log energy differs among birds, 
echolocating bats, and non-echolocating bats, after accounting for body mass (p-value = 
0.66; extra-sums-of-squares F-test). 
 
The single-line model is therefore adequate to describe the data in this problem. 
 
Contribution of a single variable: R2 as a tool for building inferential models 
 
The R-squared statistic is a valuable descriptor of the fit of a model. 
 

It is calculated as:  R2 = %100×
SSTotal

 SSResidual-  SSTotal
 

 
It measures the amount of total variation in the response variable that is explained by the 
regression on the explanatory variables. 
 
Example:  Galileo measured horizontal distance covered by a bronze ball released at 
different heights from an inclined plane on a table.  Regression can be used to describe 
the horizontal distance traveled, which would help figuring the type of trajectory taken by 
the ball. 
 
A quadratic regression model:  Distance = 199.91 + 0.71 Height – 0.00034 Height 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Both the quadratic and linear coefficients are different from 0.  From the ANOVA table, 
we find that the R-square is (76277.9 / 77022) x 100 % = 99.03%.  The fit of the model is 
very good. 
 
<<Display 10.2>> 
Do we need a cubic term in the model? 
 
 

Summar y of  Fi t

RSquar e
RSquar e Adj
Root  Mean Squar e Er ror
Mean of  Response
Obser vat i ons ( or  Sum Wgt s)

0. 990339
0. 985509
 13. 6389

     434
      7

Anal ysi s of  Var i ance

Source
Model
Er ror
C Tot al

DF
    2
    4
    6

Sum of  Squares
 76277. 922

   744. 078
 77022. 000

Mean Squar e
 38139. 0

   186. 0

F Rat i o
205. 0267

Pr ob>F
  <. 0001

Par amet er  Est i mat es

Ter m
I nt er cept
hei ght
hei ght 2

Est i mat e
199. 91282
0. 7083225
- 0. 000344

St d Er ror
16. 75945
0. 074823
0. 000067

t  Rat i o
 11. 93
  9. 47
 - 5. 15

Prob>| t |
0. 0003
0. 0007
0. 0068

Par amet er  Est i mat es

Ter m
I nt er cept
hei ght
hei ght 2
hei ght 3

Est i mat e
155. 77551
 1. 115298
- 0. 001245
0. 0000005

St d Er ror
 8. 32579

0. 065671
0. 000138
8. 327e- 8

t  Rat i o
 18. 71
 16. 98
 - 8. 99
  6. 58

Prob>| t |
0. 0003
0. 0004
0. 0029
0. 0072

Summar y of  Fi t

RSquar e
RSquar e Adj
Root  Mean Squar e Er ror
Mean of  Response
Obser vat i ons ( or  Sum Wgt s)

0. 999374
0. 998747
4. 010556

     434
      7
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The p-value for the coefficient of height-cubed provides evidence that the cubic term is 
different from 0.  But how much more variability in the response variable does it explain? 
 
The extra amount of variation explained in the response variable arising from addition of 
the cubic term is: 
 
Extra sum of squares  = SSres from reduced model – SSres from full model 
   = Unexplained by reduced model – unexplained by full 
   =744.078 – 48.254 
   = 695.824 
 
This only represents an increase of (695.824 / 77022.00) X 100 % = 0.903 % in amount 
of total variation in the response variable explained by the new model. 
 
The percentage of the total variation in the response variable not explained by the 
quadratic model was 100 – (0.990339 X 100) = 0.966 %). 
 
So the cubic term explains a significant proportion of the remaining variability from the 
reduced quadratic model (0.903/0.966 = 93.5 % of the remaining variability).  But the 
gain in term of total variation explained is small compared to what was accomplished by 
the quadratic model (i.e. about 1%). 
 
When should quadratic (or higher order terms) be included in the model? 
 
They should not be routinely included, and are useful in 4 situations: 
 
1) When there are good reasons to suspect the response to be non-linear 
2) When we search for an optimum or minimum 
3) When precise predictions are needed (presumably few explanatory variables are used) 
4) To produce a rich model for assessing the fit of an inferential one. 
 
When should an Interaction term be included? 
 
Not routinely.  Inclusion is indicated: 
 
1) When the question of interest pertains to interactions 
2) When good reasons exist to suspect interactions 
3) When assessing the fit of an inferential model 

Anal ysi s of  Var i ance

Source
Model
Er ror
C Tot al

DF
    3
    3
    6

Sum of  Squares
 76973. 746

    48. 254
 77022. 000

Mean Squar e
 25657. 9

    16. 1

F Rat i o
1595. 189

Pr ob>F
  <. 0001
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Occam’s Razor again 
 
R2 can always be made greater by adding explanatory variables.  For example fluctuation 
in the Dow Jones Index during nine days in June 1994 was predicted with the following 
seven explanatory variables: 
 
high temperature in NY city on the previous day; 
low temperature on the previous day; 
an indicator variable equal to 1 if the forecast for the day was sunny and 0 otherwise; 
an indicator variable equal to 1 if the New York Yankees won their baseball game on the 
previous day and 0 otherwise; 
the number of runs the Yankee scored; 
an indicator variable equal to 1 if the new York Mets won their baseball game on the 
previous day and 0 if not; 
the number of runs the Mets scored.  
 
The R2 of the model was 89.6 %. Would you use this model to invest in stocks? 
I hope not!  The model used 7 variables to explain variation in 9 data points.  The model 
fitted well because there were almost as many variables as observations.  That particular 
equation fits well but would be very unlikely to fit future data. 
 
Foundation for the Occam’s Razor principle: Simple models that adequately explain the 
data are more likely to have predictive power than complex models that are more likely 
to fit the data without reflecting any real associations between the variables.  This should 
be kept in mind when deciding whether to keep quadratic (or higher order) terms and 
interactions in inferential models. 
 
Example: Predicting Stock prices with 7 arbitrarily chosen variables (I had to try it for 
myself!). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Response: St ock

Summar y of  Fi t

RSquar e
RSquar e Adj
Root  Mean Squar e Er ror
Mean of  Response
Obser vat i ons ( or  Sum Wgt s)

0. 966228
0. 729821
15. 98882
58. 77778

       9

Par amet er  Est i mat es

Ter m
I nt er cept
Hi ghT
LowT
Sun
Yank
YankScor e
Met s
Met sRuns

Est i mat e
17. 617805
5. 1361639
- 5. 699337
71. 085717
 25. 81683
  4. 44963

- 35. 30382
- 8. 082005

St d Er ror
41. 79174
4. 059363
4. 944225
23. 39164
 20. 4658

3. 665936
30. 22017
5. 428728

t  Rat i o
  0. 42
  1. 27
 - 1. 15
  3. 04
  1. 26
  1. 21
 - 1. 17
 - 1. 49

Prob>| t |
0. 7460
0. 4258
0. 4549
0. 2024
0. 4267
0. 4387
0. 4507
0. 3765
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Adjusted R-square Statistic 
 
The adjusted R-square includes a penalty for unnecessary explanatory variables.  It 
measures the proportion of the variation in the responses explained by the regression 
model, but this time the residual mean squares rather than the residual sums of squares 
are used: 
 

Adjusted R2 = 100 %
 squaremean Total

 square)mean (Residual- square)mean (Total
 

 
With increased number of regression coefficients included in the model, the Residual SS 
always decline, so the R-squared statistic always increases.   
 
However for the Adjusted R2, the number of d.f. associated with the Residual mean 
square is n - #betas [Residual mean square = Residual SS / (n - #betas)].  This tends to 
increase the value of the residual MS when factors included in the model do not account 
for much of the variation in the response variable.  On the other hand, the Total mean 
square does not change when more factors are included in a model.   
 
Thus, an increase in the number of “useless” regression coefficients in a model increases 
the discrepancy between the adjusted R2 and the R-squared.  The adjusted R2 is useful 
for casual assessment of improvement of fit: factors that increase the difference between 
R2 and Adjusted R2 would in general be less useful in a model. 
 
R2 is a better descriptor than adjusted R2 of the total variation in the response variable 
explained by a model.  
 
Still the Adjusted R2 in the above model is 73.0 %.  This illustrates that R-squared is a 
difficult statistic to use for model checking, model comparison, or inference.  
 


