
 107

ENTO/ RNR 613  Multiple regression  -- Model Checking and Refinement 
 
Least squares regression analysis is not resistant to outliers. A few observations that lie 
away from the multivariate average (of the Xs and Ys) can strongly influence the 
outcome of the analysis. 
 
It is important to consider transformations and outliers before searching for an inferential 
model.  When in doubt, special tools may be useful to flag outliers: leverage or 
studentized residual values, and Cook’s distance. 
 
When a few observations have distant values for the explanatory variables, it may help to 
omit the distant cases and restrict the statistical inferences to a reduced range of 
explanatory variables. 
 
Selection of an inferential model depends on the question asked and on the patterns of 
the data.  Especially when many explanatory variables are used (i.e. complex models), 
there is not necessarily a “best” model.  There are only models that are adequate to 
answer the question of interest. 
 
Selecting a tentative model 
 
1. The model must contain parameters whose values answer the questions of interest 
 
2. It should include potentially confounding variables 
 
3. It should take into consideration the relationships indicated by initial graphical 

inspection of the data 
 
4. The number of explanatory variables included in the initial model depends on sample 

size: 
a) with large samples, one can fit a rich model including interaction and quadratic 

terms without overfitting the data (i.e. without explaining real outliers) 
b) with small samples, fitting several simple models may be needed, remembering 

that some observations may appear like outliers in simple models because real 
effects are not taken into account. 

 
Example:  Blood-Brain Barrier  
 
Rats were inoculated with cancer cells to induce brain tumors. 
 
About 10 days later (range 9-11) they were given a saline solution (control) or a solution 
of concentrated sugar to disrupt the brain membrane barrier. 
 
Fifteen minutes later, the rats got a fixed dose of an antibody supposed to attack the brain 
tumor. 
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Finally, rats were sacrificed after 0.5, 3, 24, or 72 hours, and the amount of antibody in 
the brain and liver was quantified. 
 
The questions asked are: does the barrier disruption solution increases permeability of the 
brain membrane to the therapeutic antibody, and if yes does time after injection of the 
antibody affects quantity of antibody reaching the brain? 
 
 
 
 
       Squares = Barrier disruption 
 
       Crosses = Saline control 
 
       Response = Anti Brain / Anti liver 
 
 
 
 
 
 
 
 
 
Choosing an initial model: 
 
The coded scatterplot indicates some curvature in the response (log [brain A/liver A]) to 
the 2 treatments as a function of sacrifice time (log transformed).  To avoid mismodeling 
the effect of sacrifice time at the start, sacrifice time is treated as a factor with 4 levels 
(categorical variable). 
 
The effect of the treatment appears greater for the shorter sacrifice time than the larger 
ones.  Thus the sacrifice time × treatment interaction term is included in the initial model. 
 
Finally, that experiment involved 2 types of explanatory variables: 
 
1- Design variables which are manipulated by the researcher (Sacrifice time, Treatment) 
2- Covariates that measure characteristics of the subjects that are not controllable but 

that nonetheless may affect the response. 
 
<<Display 11.4 in Sleuth>> 
 
The initial regression model includes those covariates, because including important 
covariates in a model yield higher resolution: 
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{ }
tumorlossweightFEMDAYS TREAT) x (SACTREATSAC

 tumor loss,  weight,FEM, DAYS, TREAT, SAC,|ratio antibody
+++++++
=μ

 
Where  SAC is sacrifice time (4 levels: categorical variable) 
  TREAT is treatment (2 levels: categorical) 
  DAYS is days after inoculation (3 levels: categorical) 
  FEM is sex (2 levels: categorical) 

Weight, loss, and tumor are initial weight, weight loss, and tumor weight 
(continuous covariates)  

 
Another example: Alcohol Metabolism 
 
Women and men categorized as alcoholic or not, received ethanol orally on one day and 
intravenously on another (order determined at random).  The difference in blood alcohol 
concentration between the 2 treatments provides a measure of activity of alcohol-
degrading enzymes in the stomach: such a difference is called first-pass metabolism.  
Alcohol dehydrogenase (AD) activity was also measured directly in samples from 
stomachs. 
 
Do level of first-pass metabolism differ between men and women? 
 
Can the difference be explained by difference in AD levels in males and females? 

 
<<Display 11.2>> 
 

In the scatterplot, note the 2 isolated observations with extreme values of X.  Those 
unusually “distant” observations could have much influence on regression results. 
 
There are 32 observations: the “saturated model” includes 7 terms. 
 
{ }

ALCO x FEM x gast ALCO x gast  ALCO x FEM
FEM x gastgast ALCOFEMALCO FEM, gast, |metabolism

+++
+++=μ
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What is the influence of those outliers? 
 
A strategy for dealing with Influential Observations 
 
Least squares regression is not resistant to outliers.  It is unwise to state conclusions that 
depend on one or two data points. 
 
When a few outliers are influential, 2 options are available: 
 
1- Use a resistant statistical procedure (Permutation of Rank sum test) 
2- Examine whether including the observations results in qualitative changes in 

conclusions from the tests.  If the observations have distant values for a given 
explanatory variable, restrict the analysis to a smaller range of the data.  Mention 
that the rare observations were not considered in the analysis. 

 
<< Display 11.8, Sleuth>> 
 
Results with and without observation #31 and # 32, Alcohol Metabolism Study: 
 
With all observations 
Term   Estimate Std Error t Ratio P  
Intercept  -1.65966 0.999646 -1.66  0.1099  
gastric   2.5141572 0.34337 7.32  <.0001  
female   1.4657195 1.332553 1.10  0.2823  
alcohol   2.5521036 1.945986 1.31  0.2021  
g*f   -1.673438 0.6202  -2.70  0.0126  
f*a   -2.251711 4.3937  -0.51  0.6130  
g*a   -1.458742 1.052858 -1.39  0.1786  
g*f*a   1.1986678 2.997826 0.40  0.6928  
 
Without #31 and #32 
Term   Estimate Std Error t Ratio  P  
Intercept  -0.679714 1.309056 -0.52  0.6088  
gastric   1.9212411 0.608182 3.16  0.0046  
female   0.4857728 1.466535 0.33  0.7436  
alcohol   1.5721569 1.811896 0.87  0.3949  
g*f   -1.080522 0.72115 -1.50  0.1483  
f*a   -1.271765 3.466858 -0.37  0.7172  
g*a   -0.865825 0.963107 -0.90  0.3784  
g*f*a   0.6057516 2.315807 0.26  0.7961  
 
The distant cases #31 and #32 are two males.  The slope for males is much greater with 
those 2 cases considered than without.  There may be 2 reasons for this: 
1- The slope is really greater for males than for females 
2- The relationship between gastric metabolism and enzyme concentration is not linear. 
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A prudent strategy is to exclude the 2 distant cases and restrict the analysis to a range of 
gastric AD activity lower than 3. 
 
Case-Influences Statistics 
 
When the residual plot from fitting a good inferential model does not suggest any 
problems, there is generally no need to examine case influence statistics.   
 
Leverage for flagging cases with unusual explanatory variable value 
 
The leverage (h) of an observation is a measure of the distance between its explanatory 
variable value and the average of the values of the explanatory variable used in the 
model.   
 
One formula is (see Sleuth p. 303 for the other): 
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i.e. h is a distance of Xi from X in units of standard deviation.  It varies between 1/n and 
1. 
 
A case with high leverage may have strong influence on the statistical inferences.  A case 
with high leverage is likely the only observation in the “region”.  Because the shape of 
the regression surface is determined by the method of Least squares, the residual of a case 
with high leverage must be small, which implies that such cases act as a magnet on the 
estimated regression surface.   
 
<< Display  11.10 in Sleuth>> 
 
A case with high leverage will not influence the regression surface if the value of the 
observation falls close to the regression surface. 
 
The average value of h is p/n, where p is the number of regression coefficients in the 
model.  Some statisticians use twice that value as a lower threshold to flag influential 
values. 
 
Studentized Residuals for flagging Outliers 
 
A studentized residual is a residual divided by its estimated standard deviation.  It is a 
useful influence statistic because not all residuals have equal variability, so visual 
inspection of the residuals may not always provide a correct evaluation of outliers.  The 
higher the leverage, the lower the expected spread of the residuals: SD (Residuali)= 



 112

( )hi−1σ .  This is why the usual residual plot may fail to direct attention to “distant” 
outliers. 
 
The studentized residual: 
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put all residuals on a common scale.  Roughly 95 % of those residuals are expected to be 
between –2 and 2. 
 
Cook’s Distance for flagging influential cases 
 
Cook’s distance measures the overall influence of an observation: the effect that omitting 
a case has on all the estimated regression coefficients. 
 
One way of calculating this statistic shows that a case with a large Cook’s D is influential 
because it has a large studentized residual, a large leverage, or both: 
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Some statisticians use as a rough guideline that a value of Di larger than 1 indicates a 
large influence. 
 
The Alcohol Metabolism example: 
 
<<Display 11.11 Sleuth>> 
 
(Cook’s D, Leverage, and Studentized Residuals can be saved after an analysis from the 
Fit Model platform, then plotted using the Graph platform) 
 
We thus eliminate case #31 and #32.  From the saturated model above, none of the 
coefficients involving Alcoholism were different from zero.  We can assess formally 
whether any terms containing ALCO should be retained in the inferential model. 
 
The Extra Sum of square test for comparing the following full and reduced model: 
 
Full: 
 
{ }

ALCO x FEM x gast ALCO x gast  ALCO x FEM
FEM x gastgast ALCOFEMALCO FEM, gast, |metabolism

+++
+++=μ
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Reduced: 
 
{ } FEMxgastgastFEMFEM gast, |metabolism ++=μ

 

is  

( )

88.0
4

48.1922.20
22,4

−
=F = 0.21, which yields a p-value of 0.93.  The data 

indicate no effect of alcoholism on first-pass metabolism. 
 
For the reduced model we obtain: 
 
 
 
 
 
 
 
 
 
So we have three possible choices for going further in selecting an inferential model: 
 
a) { } femgastfemgastmetabolism
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This model indicates that the difference in first-pass metabolism between males and 
females is 1.52 units, for a given level of AD activity (two-sided p-value = 0.0001).  The 
F-statistic for comparing this model to the previous one is 1.82 with 1, 27 df (p-value > 
0.05), so this smaller model is adequate, at least for prediction. 
 
The intercept is allowed to differ from zero for both males and females; this would be 
acceptable if we knew that other factors than AD contribute to first-pass metabolism.  
The fact that we obtain an intercept for males that is not different from zero (two-tailed p-
value = 0.15), and the possibly negative intercept for females, suggests that a better 
inferential model could be obtained. 
 
b) { } ( )fem x gastgastfemgastmetabolism

o βββμ
21

,| ++=  
(common intercept, different slope model) 
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This model states that first-pass metabolism is directly proportional to gastric activity 
(two-sided p-value < 0.001), but the slope of the relationship differs for males and 
females (two-sided p-value < 0.0001).  The F-statistic to compare this model to our 
previous (full) model is 1.74 with 1, 27 df (p-value > 0.05), so this smaller model is 
adequate, at least for prediction. 
 
We allowed the common intercepts to be different from zero, but there is no evidence that 
this is so (two-sided p-value = 0.82).  To obtain a simple answer to our questions, a third 
model seems indicated.  
 
c) { } ( )fem x gastgastfemgastmetabolism ββμ

21
,| +=  (common 

intercept forced through the origin, different slopes) 

 
The logic here is that without any AD there should not be any first-pass metabolic 
activity.  This thinking could have arisen from previous knowledge on alcohol digestion.  
The pattern of the data observed in the previous analysis also provides an empirical 
argument for forcing the origin through 0.  
 
To force the regression line through the origin, tick the box “no intercept” in the JMP Fit 
Model platform.  
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Here again, first-pass metabolism is directly proportional to AD activity (two-sided p-
value < 0.0001), and the slope for males and females differs (two-sided p-value < 
0.0001).  The extra-sum-of-squares F-test for comparing this model to the previous full 
model yields a value of 0.56 with 2, 28 df (P > 0.05), so this model fits. 
 
A simple interpretation of this model can be obtained, noting that the mean first-pass 
metabolism for males divided by the mean first-pass metabolism for females is: 
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which is estimated to be 2.20.  For a given level of gastric AD activity, the mean first-
pass alcohol metabolism for men is estimated to be 2.20 times as large as the mean first-
pass alcohol metabolism for women. 
 


