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RNR / ENTO 613.  Multiple Regression – Strategies for Variable Selection__________ 
 
There are 2 good reasons to minimize the subset of explanatory variables used in a regression 
model: 
 
1) Simplicity is preferable to complexity (principle of parsimony) 
2) Unnecessary terms in a model yield less precise inferences (multicollinearity) 
 
The objective of the study guides the strategy used for paring down the explanatory variables.  
The final set of variables chosen is usually one of several good sets. 
 
Four Types of Objectives for variable selection 
 
1) Well-defined questions: The goal is to examine the effect of an explanatory variable (or a 

few) after accounting for other variables (covariates) that affect the responses. 
 
Procedure:   a) Use a variable selection technique to choose a subset of the covariates 
  b) Then add the variable of interest in the model 

c) Only interpret the coefficient obtained for the variable of interest, which 
represents the association between that variable and the response after accounting 
for the effects of the other explanatory variables. 
 

2) Fishing for Explanation: No well-defined question can be formulated.  The goal is to search 
for variables that are associated with the responses, possibly after accounting for the effect of 
some important covariates.   

 
Procedure: a) Use a variable selection technique to choose a subset of explanatory variables, 

with the restriction that this subset must contain the covariates. 
 b) add the variables of interest to the covariates (perform Extra-SS test to assess 

whether these variable improve fit of the model and by how much). 
 c) Interpretation of the coefficients associated with the explanatory variables in 

the final model has to be done with caution. 
 
Caution is required because: 
 
i) The explanatory variables chosen are just one of the possible sets (especially if sequential 

procedures for variable selection are used).  Inclusion or exclusion of individual 
explanatory variables depends strongly on the correlation between them. 

ii) Interpretation of the coefficients with correlated explanatory variables is difficult.  For 
example, the sign of the coefficient associated with a particular explanatory variable may 
change depending on the other explanatory variables included in the model.  It is possible 
to imagine a situation where a set of “good models” would differ qualitatively in their 
conclusions. 
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3) Prediction:  No interpretation of coefficients is necessary.  The variable selection techniques 
are used to select a model convenient for future predictions.  Simple models are preferred to 
reduce potential collinearity problems that result in loss of precision. 

 
4) Regression for Adjustment or Ranking:  Multiple regression can be used for adjustment, i.e. 

rank a set of responses after removing the effect of some explanatory variables.  To do this, a 
model is fitted to account for the variables which effect need to be removed, and the 
residuals are used for ranking.  

 
Example:  A model is fitted to describe the association between percentage of students taking the 
SAT test in different U.S. states (X1), the median class score of these students (X2), and the 
average SAT scores obtained for each state (Y).  Residuals from that model (one for each state) 
are used to identify the states most likely to produce well-trained students. 
 

<<Display 12.2, Sleuth>> 
 
Multicollinearity  
 
Multicollinearity describes the situation when two or more explanatory variables are highly 
correlated [i.e. sj

2
 (1 - Rj

2) is small: see below], which results in inflated estimates of variance for 
the regression coefficients and a loss of precision of predictions.   
 
The variance of the sampling distribution of a regression coefficient obtained by the method of 
least squares is: 
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Where sj

2 is the sample variance of the explanatory variable Xj, and Rj
2 is the R-squared term 

from the regression of Xj on the other explanatory variables (i.e. Xj considered as a  response 
variable).  As additional explanatory variables are incorporated in a model, Rj

2 always increases. 
 
Multicollinearity is likely to increase when too many explanatory variables are included in the 
model.  Multicollinearity has many negative effects, including: 
 
1) inflation of the SE of predicted values and of regression parameters 
2) greater chance of having influential observations 
3) intensification of the effect of measurement error in the explanatory variables. 
 
A General Strategy for dealing with Many Explanatory variables 
 
1. Identify the objectives of the study 
2. Screen the explanatory variables, listing the ones that are relevant for the objectives, 

excluding redundancy (i.e. reduce potential for multicollinearity) 
3. Perform exploratory analysis  --scatterplots and correlations 
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4. Perform transformations as necessary 
5. Examine residual plot after fitting a rich model  --detection of important interactions is done 

here; consider further transformations and outliers 
6. Use a computer-assisted technique to chose a subset of explanatory variables (= covariates), 

keeping in mind the questions of interest 
7. Proceed with the analysis, using the selected covariates, to which you add the explanatory 

variables you are particularly interested in. 
 
Example:  Does pollution kill people? 
 
Response variable:  Death per 100,000 population in 60 U.S. cities  
 
Explanatory variables: 
 

Weather variables:  4 variables  
Demographic variables:  8 variables   
Pollution-related variables:  3 variables  

 
<<Display 12.16, Sleuth>> 

 
Steps:  
 
1. Objective of the study: What is the role of the pollution-related variables on mortality, after 

accounting for the weather and demographic variables?  
 
2. Screen the variables.  All variables seem relevant and non-redundant. 
 
3 and 4.  Perform exploratory analysis with a scatterplot of response and explanatory variables.  
Check for nonlinear relationships, high correlation among explanatory variables, and outliers. 
Apply transformations if required.   
 
Weather variables: 
 
 
 
 
 
 
 
 
Demographic variables: 
 
 
 
 
 

Cor r el at i ons

Var i abl e
PRECI P
HUMI DI TY
JANTEMP
JULYTEMP

PRECI P
  1. 0000
 -0. 0773
  0. 0922
  0. 5033

HUMI DI TY
 -0. 0773
  1. 0000
  0. 0679
 -0. 4528

JANTEMP
  0. 0922
  0. 0679
  1. 0000
  0. 3463

JULYTEMP
  0. 5033
 -0. 4528
  0. 3463
  1. 0000

Cor r el at i ons

Var i abl e
OVER65
HOUSE
EDUC
SOUND
DENSI TY
NONWHI TE
WHI TECOL
POOR

OVER65
  1. 0000
 -0. 5091
 -0. 1389
  0. 0650
  0. 1627
 -0. 6378
 -0. 1177
 -0. 3098

HOUSE
 -0. 5091
  1. 0000
 -0. 3951
 -0. 4106
 -0. 1857
  0. 4194
 -0. 4257
  0. 2599

EDUC
 -0. 1389
 -0. 3951
  1. 0000
  0. 5522
 -0. 2428
 -0. 2088
  0. 7032
 -0. 4033

SOUND
  0. 0650
 -0. 4106
  0. 5522
  1. 0000
  0. 1847
 -0. 4103
  0. 3387
 -0. 6807

DENSI TY
  0. 1627
 -0. 1857
 -0. 2428
  0. 1847
  1. 0000
 -0. 0088
 -0. 0311
 -0. 1657

NONWHI TE
 -0. 6378
  0. 4194
 -0. 2088
 -0. 4103
 -0. 0088
  1. 0000
 -0. 0044
  0. 7049

WHI TECOL
 -0. 1177
 -0. 4257
  0. 7032
  0. 3387
 -0. 0311
 -0. 0044
  1. 0000
 -0. 1852

POOR
 -0. 3098
  0. 2599
 -0. 4033
 -0. 6807
 -0. 1657
  0. 7049
 -0. 1852
  1. 0000
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Pollution variables: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
There is evidence of non-linearity and some observations are isolated.  A log transformation of 
the pollution variables seems appropriate. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Cor r el at i ons

Var i abl e
HC
NOX
SO2

HC
  1. 0000
  0. 9838
  0. 2823

NOX
  0. 9838
  1. 0000
  0. 4094

SO2
  0. 2823
  0. 4094
  1. 0000
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5. Residuals from a rich model to examine potential outliers and further transformations. 
 
There are a relatively large number of explanatory variables compared to the number of 
observations, so we look first at the residuals from a Model only containing the simple effects: 
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There are no obvious outliers and the plot of the residuals versus the fitted values suggests no 
problem with unequal variance across combinations of values of the explanatory variables. 
 
Some observations could have strong influences, as indicated for example by the leverage plot 
involving LogSO2.  Those should be kept in mind in subsequent analysis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6. Computer-assisted technique for choosing a subset of the explanatory variables. 
 
Sequential or stepwise selection procedures are one option to explore some (but not all) models 
from the vast array of possible models. 
 
In this problem, we want to select a suitable set of covariates.  Once this set is chosen, we will 
add to the model the pollution-related variables. 
 
Model Selection Procedures 
 
A.  Stepwise regression.  
 
All procedures begin with a current model and advance by considering other models by either 
eliminating (backward elimination) or adding (forward selection) a variable. 
 
Forward Selection: The procedure starts with a constant mean model (intercept only) and add 
explanatory variables one at a time until no further addition significantly improves the model fit.   
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Each step consists of: 
 
1. Consider all models obtained by adding one more explanatory variable.  Calculate the extra-

sum-of-squares F-statistic (“F-to-enter”) corresponding to each new model and identify the 
variable with the largest F-to-enter. 

2. If the largest F-to-enter is larger than the user specified value (usually F = 4, which is 
equivalent to a t = 2), add that explanatory variable to the model. 

3. Repeat until no additional variables can be added. 
 
Backward Elimination: Start with a model containing all the covariates: 
 
1. For each variable in the current model, calculate its extra-sum-of-squares F-statistic (“F-to-

remove”) and identify the variable with the smallest F. 
2. If the smallest F-to-remove is smaller than the user specified value (F = 4), remove that 

explanatory variable from the model. 
3. Repeat until no additional variables can be removed. 
 
Stepwise Regression: Start with the constant mean model: 
 
1. Do one step of forward selection 
2. Do one step of backward elimination 
3. Repeat until no variable can be added or removed. 
 
Compounded Uncertainty in Stepwise Procedures: 
 
At each step, the statistic considered to enter (or remove) a parameter is the largest (smallest) of 
several F-statistics.  The significance levels on the statistics for the parameters entered in the 
model are in general smaller than they would be in a unique model, because of compounded 
uncertainty.  Sequential procedures tend to select models that have too many variables, i.e. they 
are too permissive.   
 
<<Display 12.7, Sleuth>> 
 
Despite this limitation, Stepwise procedures are convenient and have been used for 30 years to 
eliminate unnecessary explanatory variables in models.   
 
B.  R-square and Adjusted R-square 
 
Comparing 2 models with the same number of parameters is easy: the one with the larger R2 (i.e. 
smaller residual mean square, σ2) is preferred.  R-square always increases with increased number 
of variables in a model. 
 
On the other hand, the adjusted R-squared is discounted by the number of parameters in the 
model.  Choosing the model with the highest adjusted R2, is still similar to selecting the model 
with the smallest residual mean square, which is a criterion that generally favors models with too 
many variables if the set contains unimportant explanatory variables. 



 124

 
C. The Cp Statistics and other Information Criterion 
 
An alternative approach for model selection involves fitting all possible subsets of explanatory 
variables, and then identifying those that best satisfy some criteria.  JMP does not automatically 
fit all possible subsets of models. 
 
There are many criteria available, such as the Schwarz’s Bayesian Information Criterion (BIC) 
and the Cp statistic.  (JMP provides the closely related Akaike’s Information Criterion –the AIC, 
instead of the BIC). 
 
The Cp criterion considers the trade-off between bias due to excluding important explanatory 
variables and extra variance in the coefficients (and the predicted response) due to including too 
many:  Too few variables does not provide accurate prediction of the responses (bias); too many 
increases the risk of multicollinearity (large SE). 

 
The Cp statistic compares the mean squares error of a reduced model to a model with all 
available explanatory variables, assuming that the model with all the variables has no bias.  Cp 
is computed as: 
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where σ̂ 2 is the estimate of the population variance from the tentative model, σ̂ 2

full  is the 
estimate of variance from the model with all possible explanatory variables, and p the number of 
regression coefficients. 
 
Models with small Cp statistics are more favorable: 
 
1. If a model lacks important explanatory variables, it will show greater residual variability than 

the full model, so σσ ˆˆ 22
full−  will be large, and Cp will be large. 

2. If the bias of the 2 models is the same (i.e. the estimates of σ̂ 2 are similar), including more 
explanatory variables in one of the model will increase the value of p, and thus incorporate a 
penalty for having more variables than necessary, i.e. increase Cp. 

 
A model without bias is represented by Cp ≤ p (the model with all the variables is assumed to 
have Cp = p), the number of regression parameters.  Picking a single model among those with a 
small Cp is a mater of selecting the most convenient model that has all its coefficients different 
from zero. 
 
Sequential Variable selection: Pollution Example. 
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In JMP, you can use the Cp criterion with a Sequential Variable Selection technique to choose a 
model without too many parameters: 
 
If you use Mallow’s Cp as a model selection criterion, the model chosen is generally the one 
where Cp approaches p. 
 
With a probability to enter = 0.25, and a probability to remove = 0.10, these procedures select 
the following variables: 
 
Step History:  Forward 
Step  Parameter Action  "Sig Prob" Seq SS  RSquare Cp (p) 
1 NONWHITE Entered 0.0000  94595.57 0.4144  43.366 (2) 
2 EDUC  Entered 0.0000  33848.33 0.5627  20.206 (3) 
3 JANTEMP Entered 0.0011  17457.34 0.6392  9.2293 (4) 
4 HOUSE Entered 0.0205  7722.099 0.6730  5.4893 (5) 
5 JULYTEMP Entered 0.1173  3345.937 0.6876  5.0022 (6) 
6 PRECIP Entered 0.0685  4366.53 0.7068  4.7564 (7) 
7 DENSITY Entered 0.1254  2983.228 0.7198  3.5389 (8) 
 
SSE  DFE MSE  RSquare RSquare Adj Cp  AIC 
63954.057 52 1229.886 0.7198  0.6821  3.538867 434.2945 
 
Step History: Backward 
Step  Parameter Action  "Sig Prob" Seq SS  RSquare Cp (p) 
1 HUMIDITY Removed 0.9179  14.46264 0.7229  11.011 (12) 
2 SOUND Removed 0.8442  51.42534 0.7227  9.049 (11) 
3 POOR  Removed 0.9129  15.59842 0.7227  7.0606 (10) 
4 WHITECOL Removed 0.8378  53.60253 0.7224  5.1004  (9) 
5 OVER65 Removed 0.4939  589.8486 0.7198  3.5389  (8) 
6     HOUSE Removed 0.1549  2562.097 0.7086  3.4433  (7) * 
 
* The values of Cp are always smaller than p, so we could choose the model with the smallest Cp 
value. 
 
SSE  DFE MSE  RSquare RSquareAdj Cp  AIC 
66516.153 53 1255.022 0.7086  0.6756  3.443346 434.6513 
 
Step History: Stepwise (Mixed in JMP) 
Step  Parameter Action  "Sig Prob" Seq SS  Rsquare Cp (p) 
1 NONWHITE Entered 0.0000  94595.57 0.4144  43.366 (2) 
2 EDUC  Entered 0.0000  33848.33 0.5627  20.206 (3) 
3 JANTEMP Entered 0.0011  17457.34 0.6392  9.2293 (4) 
4 HOUSE Entered 0.0205  7722.099 0.6730  5.4893 (5) 
5 JULYTEMP Entered 0.1173  3345.937 0.6876  5.0022 (6) 
6 JULYTEMP Removed 0.1173  3345.937 0.6730  5.4893 (5) 
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SSE  DFE MSE  RSquare RSquare Adj Cp  AIC 
74649.752 55 1357.268 0.6730  0.6492  5.489281 437.5731 
 
Summary of Sequential Methods (based on Cp criterion): 
 
Parameter Forward Backward Stepwise 
Intercept X X X 
Precip  X  
JanTemp X X X 
JulyTemp  X  
Over65    
House X  X 
Educ X X X 
Sound    
Density  X  
NonWhite X X X 
WhiteCol    
Poor    
Humidity    
 
Knowing that Sequential Procedures tend to be too permissive, we could decide to retain a subset 
of 4 explanatory variables.  The model with 4 explanatory variables also has a small AIC (the 
best models have the smallest values for the Akaike’s Information Criterion): 
 
JanTemp, House, Educ, NonWhite 
 
We can now answer the question of interest: 

Does pollution kill people? 
 
We fit a reduced model containing the 4 selected covariates and compare it to the full model, 
which includes the 3 additional pollution variables.  We then calculate an extra-sum-of-squares 
F-test. 
 
Full Model: Analysis of Variance 
Source  DF Sum of Squares Mean Square F Ratio 
Model  7 165254.85  23607.8 19.4802 
Error  52 63018.24  1211.9  Prob>F 
C Total 59 228273.09    <.0001 
 
Parameter Estimates 
Term   Estimate Std Error t Ratio  Prob>|t|  
Intercept  1529.2923 213.8991 7.15  <.0001  
JANTEMP  -2.544714 0.801359 -3.18  0.0025  
HOUSE  -93.70173 48.15509 -1.95  0.0571  
EDUC   -24.35796 6.964375 -3.50  0.0010  
NONWHITE  5.5194163 0.768159 7.19  <.0001  
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LogHC  -60.18314 30.7091 -1.96  0.0554  
LogNOX  83.081118 34.09653 2.44  0.0183  
LogSO2  -4.895639 15.87605 -0.31  0.7590  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Reduced Model: Analysis of Variance 
Source  DF Sum of Squares Mean Square F Ratio 
Model  4 153623.34  38405.8 28.2964 
Error  55 74649.75  1357.3  Prob>F 
C Total 59 228273.09    <.0001 
 
Extra SS F 3, 52 = [74649.75 – 63018.24 / 3] / 1211.9 = 3.20 
 
F 3,52 = 3.20, P = 0.031, therefore we reject the null hypothesis and conclude that there is 
evidence for an association between pollution and mortality rate.  The coefficients associated 
with the pollution variables should be interpreted cautiously, as always when we are fishing for 
an explanation (indeed, the coefficients seem difficult to interpret). 
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