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Factor A

Factor B

B1 B2

A1 A1, B1 A1, B2

A2 A2, B1 A2, B2

Sex

Hormone Treatment

Not Treated Treated

Male Male, Not Trt Male, Trt

Fem Fem, Not Trt Fem, Trt

' RNR 613 — Multi-factor ANOVAs

Review...

Analysis of Variance

Models to assess means from studies with $1 factors that have $2 levels that are often qualitative. 

One-factor ANOVA

Appropriate model for completely randomized designs (CRD) where one treatment is assigned to

experimental units at random. 

Multi-factor ANOVA

More than one factor examined simultaneously in a single study.  Appropriate for completely randomized

designs with multiple factors, randomized block designs, etc. 

Sleuth views ANOVA as a special case of Regression.  

Note: For designs with >1 factor, there are no nonparametric equivalents that work well; hence, model checking

and appropriate transformations are more important than ever. 

Example: Response is plasma calcium concentration in birds; factors considered simultaneously are hormone

trt and sex. 

No Hormone Treatment Hormone Treatment

Female Male Female Male

16.5 14.5 39.1 32.0

18.4 11.0 26.2 23.8

12.7 10.8 21.3 28.8

14.0 14.3 35.8 25.0

12.8 10.0 40.2 29.3

Cell 6y = 14.88 12.12 32.52 27.78

In ANOVAs, responses from each treatment combination can be envisioned as a cell in a table (e.g.,Male,

Not Trt).  

A treatment set is factorial if all levels of all treatments are tested with all levels of all other treatments.  For

example:  Factorial treatment sets are designated by the number of levels of each factor.  Above,

each of 2 factors has 2 levels, yielding a 2 x 2 factorial.  

W ith 3 factors: factor A has 3 levels,  factor B has 3 levels, factor C has 2 levels, the design is 3 x 3 x 2. 
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W hen all levels of any two factors are examined in all combinations, then these factors are crossed.  

A design is full factorial when all factors are crossed with all other factors at all combinations of factor levels. 

Factorials are powerful designs because they allow you to precisely estimate interactions among factors.  

Multiply the number of levels of each factor to determine the total number of cells in a study.  A 3 x 3 x 2

factorial has 18 cells.  

A treatment set is balanced if there is an equal number of replicates for each treatment combination.

If a design is balanced then N for the study = cells x replicates; e.g., with 3 replicates per cell and 18 cells, N

= 18 x 3 = 54.  

Additive Models

ANOVAs without interactions, where the effect of one factor has the same effect on the response regardless

of the levels of the other factors.  

: {plasma * hormone, sex} = hormone + sex

Nonadditive Models  

ANOVAs with interactions, where the effect of one factor on the response depends on the levels of the other

factors.  

: {plasma * hormone, sex} = hormone + sex + hormone x sex

Notation

Uniquely identify every experimental unit in a 2-way design with 3 subscripts: 

ijlLet y  denotes the l  replicate of the i  level of factor A and the j  level of factor B.  th th th

e.g., from the plasma calcium experiment, if hormone trt is factor A and sex factor B, then

213 115y  = 21.3 mg/100 ml, y  = 12.8 mg/100 ml, etc. 

Each cell formed by the combination of level i of factor A and level j of factor B has a mean for all of its

ijreplicates:   6y .  

11 12In the example, 6y . = 14.88, 6y . = 12.12, etc.  

i j The mean of all replicates for level i of factor A is 6y ., and for level j of factor B is 6y.  

1e.g., mean for all non-treated birds is 6y .

2mean for all treated birds is 6y .

1mean for all females is 6y.

2mean for all males is 6y.

Kinds of Questions

Factor A effect? Factor B effect? (Main effects)

A x B interaction? (Interactive effect)
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Null hypotheses for these questions are:

o no hormoneH : No effect of hormone treatment on mean plasma calcium concentration of birds (i.e., :  =

hormone 1 2:  or : . = : .)

a no hormone hormoneH : Effect of hormone treatment on mean plasma calcium concentration of birds (i.e., :  � :

1 2or : . � : .)

o female male 1 2H : No effect of sex on the mean plasma calcium concentration of birds (i.e., :  = :  or :.  = :. )

a female male 1 2H : Effect of sex on mean plasma calcium concentration of birds (i.e., :  � :  or :.  � :. )

oH : No interaction of sex and hormone treatment on the mean plasma calcium concentration of birds

aH : Interaction of sex and hormone treatment on the mean plasma calcium concentration of birds.  

To test null hypotheses, partition Total SS into appropriate sources.  

• Total SS — variability among all data.  

Squared difference between every observation (each factor, level, replicate) and the grand mean with

abn – 1 df.  

• Among-group, Model or Treatment SS — variability among cells, with ab – 1 df (a x b total cells).

n is the no. replicates in a cell.  

• Within-group or Error SS — variability within cells, with ab(n – 1) df:

Because there are more than 2 factors, Model SS contains the effects of both factors which must be

separated. 

Partition the Model SS into SS attributable to factor A by considering factor A as the sole factor in a one-

factor ANOVA (i.e., ignore factor B), then do the same for factor B (i.e., ignore factor A).  

• For factor A SS, determine the squared difference between the mean for each level i of factor A and the

grand mean:

, with a –  1 df.  

• For factor B: 

, with b –  1 df.  
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Interactions

Two factors interact if the effect that one factor has on the mean response depends on the value of the

other factor.  

Does the effect of hormone treatment on plasma calcium levels in birds depend on the sex of the

bird?  

There is evidence of interaction when variability among cells � variability among levels of factor A plus the

variability among levels of factor B.  That is

Model SS � factor A SS + factor B SS.  

This difference in variability is that due to any interaction between factors A and B.  

Interaction effects influence the mean response in addition to the sum of the effects of each factor

considered separately. 

A x B interaction SS = Model SS – factor A SS – factor B SS

A x B interaction df = Model  df – factor A df – factor B df

 

A x B interact df = (factor A df) (factor B df) = (a – 1) (b – 1)

JMP output for bird calcium plasma levels...

Need SS’s and df’s to determine Mean Squares to generate

F-statistics for null hypotheses of interest, specifically, Total

SS, Cell SS (or Model SS), Sex SS, Hormone SS, Sex x

Hormone SS, and Error SS (Within-cells SS) and their

respective df’s.  

Sex and Hormone are called Main Effects to distinguish them

from interaction effects

Effect is a more general term than factor because effects can

include other quantities, such as interactions, that are not actual

factors specified in an experiment. 
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ANOVA F-tests

Total SS (1827.70, 19 df) 

Error SS (366.37, 16 df, MSE = 22.89)

Model SS is SS attributable to all treatment effects

Partition Model SS into components, including main effects and interaction; note SS’s for these 3 effects

sum to the Model SS.  

Hormone Effect?

o no hormone hormone 1 2H : :  = :  or : . = : .

a no hormone hormone 1 2H : :  � :  or : . � : .

1,16 hormoneF   = MST  ÷ MSE = (1386.11/1) ÷ (366.37/16) =

 1386.11 ÷ 22.898 = 60.53, with P < 0.0001 

Conclude that hormone-treated animals, regardless of sex, had a higher mean (6y  ± SE) plasma calcium

level (30.15 ± 1.51) compared to those not treated (13.5 ± 1.51).  

Sex Effect?

o female male 1 2H : :  = :  or :.  = :.

a female male 1 2H : :  � :  or :.  � :.  

sexF = MST  ÷ MSE = (70.31/1) ÷ (366.37/16) = 70.31 ÷ 22.898 = 3.07,

P = 0.09 (marginal)  

Conclude that females had slightly higher plasma calcium levels (23.7 ± 1.51), regardless of hormone

treatment, than males (20.0 ± 1.51). 

Interaction?

oH : No interaction of Sex and Hormone treatment on the mean plasma calcium 

aH : There is interaction of sex and hormone treatment on the mean plasma calcium

sex x hormoneF = MST  ÷ MSE = (4.90/1) ÷ (366.37/16) = 

4.90 ÷ 22.898 = 0.21, P = 0.65

Conclude no obvious Sex x Hormone interaction.

Summary ANOVA Table

Source of Variation SS df MS F P

    Cells (model) 1461.33 3

        Hormone  (Factor A) 1386.11 1 1386.11 60.50 0.0001

        Sex (factor B) 70.31 1 70.31 3.07 0.099

        Hormone x Sex 4.90 1 4.90 0.21 0.65

    Error (within-cells) 366.37 16 22.90

Total 1827.70 19
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Female Male

No hormone 14.9 12.1 13.5

Hormone 32.5 27.8 30.2

23.7 20.0

Interaction is a test of additive versus non-additive models.  

The F-test for interaction is equivalent to an Extra SS F-test comparing full (main effects and interaction)

and reduced models (main effects only).

1,16F = (error SS reduced – error SS full / diff in df) / MSE full = F  = (371.37 – 366.27 / 1) 22.90 = 0.21, P =

0.65

What if interaction was significant?

Then it is not appropriate to consider the effect of hormone treatment on plasma calcium  without also

knowing sex of the bird.  

Tests for main effects are no longer meaningful and should not be considered independently.  

Assess by examining Cell, Row, and Column means graphically. 

Check Residuals

To assess model fit and assumptions.  Examine (1) the centers, (2) relative spreads, (3) general shapes of

each group’s  distribution, and (4) outliers.  

Residuals are the original observations with their cell means subtracted out.
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' RNR 613 — Randomized Block Designs

ANOVA analyses and Experimental Design are linked closely. 

• Experimental design — the way in which treatments are assigned to experimental units.  

To determine the type of design, consider the restrictions placed on the randomization...

In the pig-feed experiment we covered previously, animals were assigned treatment groups completely at

random.  

This describes a Completely Randomized Design.

• Randomized Block Design

W hen possible, choose experimental units that are as similar as possible.  

Sometimes, more experimental units are needed than like-units are available so it is often effective to group

similar experimental units into blocks, each of which contains the same number of units as there are factor

levels. 

Block — a group of homogeneous experimental units.  

Each block usually contains one complete replication of the complete experiment (sometimes more than

one).  

E.g., Evaluate the effects of burning intensity (intense, light, no burning = control) on density of a bird (1

factor with 3 levels).  

Need large 25-ha plots, so employ a randomized block experimental design (RBD) and perform experiment

in different areas across a region.  Each area is a block.  

Randomized Block Designs replicate the entire treatment structure within a set of predefined blocks.  

Blocks are then be identified as a factor in the analysis so variability among blocks is removed. 

Blocking is an extension of pairing used in paired t-test framework, and identifies experimental units that are

related to one another.  

Example: Guinea pigs separated into “blocks” based on the lab where they are kept.  20 guinea pigs

randomly placed into 5 groups (blocks) of 4 individuals each; individuals within each block

randomly assigned 1 of 4 diets. 

Animals are raised on respective diets and the ending body masses:

Diet

Block/Lab 1 2 3 4 Block 6y 

1 7.0 5.3 4.9 8.8 6.50

2 9.9 5.7 7.6 8.9 8.03

3 8.5 4.7 5.5 8.1 6.70

4 5.1 3.5 2.8 3.3 3.68

5 10.3 7.7 8.4 9.1 8.88

Diet 6y 8.16 5.38 5.84 7.64 6y .. = 6.76

Null hypothesis of interest is one of no diet effect.  
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Note the similarity between the above table and the one we examined for a two-way ANOVA.  

Determine necessary SS:  

Total diet blockSS  and SS  but also SS  

If block is ignored, differences among blocks then become part of error SS.  

Interaction in RBD?

W ith two factors and a Completely Randomized Design, we assessed interactions between factors. 

In RBD, the block x treatment interaction provides the estimate of experimental error.  

In statistics programs, you must specify treatment and block effects but not the block x treatment interaction

because it is the error term (when there is only one replicate per block).

3,19In the Guinea pig-diet example, we find Diet effect highly significant (F  = 11.82, P = 0.0007) after

removing the variation explained by blocks (that due to differences in lab conditions) from experimental

error.  

Correct RBD Analysis

Incorrect One-way Analysis

If analyzed incorrectly without accounting for the block

effect, diet is no longer significant (P = 0.15).  

Remember, SS and df like energy: they can never be created or lost, they can only change form. 
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SS and df that were partitioned into Block in RBD analysis are included as error in the one-way analysis, so

error MS increased from 0.77 to 4.49 when we did not account for block-block variation.

The probability of finding a treatment effect (power) was reduced.  

' RNR 613 — Nested ANOVAs

W hen every level of factor one is examined in combination with every level of factor two, the two factors are

crossed.

Drug 1 2 3

Source A B A B A B

W hen some levels of factor one are examined in combination with some levels of a factor two, and the remaining

levels of factor one are examined with different levels of factor two, the factors are nested (or hierarchical).  

Drug 1 2 3

Source A B C D E F

In both schematics above, each of the 3 Drug levels are examined from 2 levels of supply Source.

In the first, the supply Source is the same for all levels of Drug.  These factors are crossed.

In the second, the supply Source is different for each level of Drug.  These factors are nested.  Therefore, Source is

nested within Drug.

For example, if 4 tests were administered to 4 high school classes (i.e., a factor with 4 levels), and 2 of those 4

classes are in high school A, whereas the other two classes are in high school B

The levels of the first factor (4 different tests) are nested in the second factor (2 different high schools).

Levels of nested factors (here Source) are often determined at random rather than being fixed.   

In other cases, experiments are designed with nesting so that hypotheses about individual samples can be tested.  

Typically, however, inclusion of a random-effects "nested" factor are included to broaden inferences.  In the example

above, primary interest is in the effect of Drug, a fixed-effect factor.  

By recognizing and accounting for the effect of supply Source, we account for some of the random variation due to

Source to increase the strength of the hypothesis tested about Drug. 

ANOVA table if Source not identified

Source df SS MS F P

Drug 2 61.16 30.58 26.21 0.0002

Error 9 10.50 1.166

C Total 11 71.66

ANOVA table with Source(Drug) estimated incorrectly as a fixed effect

Source df SS MS F P

Model 5 62.66

    Drug 2 61.16 30.58 20.38 0.0021

    Source[Drug] 3 1.50 0.33 0.33 0.8022

Error 6 9.00 1.50

C Total 11 71.66
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ANOVA table with Source(Drug) estimated correctly as a random effect

Source df SS MS F P

Model 5 62.66

   Drug 2 61.16 30.58 61.16 0.0037

   Source[Drug] 3 1.50 0.50 0.50 0.8022

Error 6 9.00 1.50

C Total 11 71.66

In the last table, Source[Drug] is used as the error term (denominator for F-test) by which the Drug effect is

tested, not the MS error for the full model. Notice the change in the P-value for Drug between fixed and

random effect models.  

Tests with Random Effects

Source SS MS Num DF Num F Ratio Prob>F

Drug 61.1667 30.5833 2 61.1667 0.0037

Source[Drug] 1.5 0.5 3 0.3333 0.8022

Random Effects Models

In most cases, the particular levels of a factor studied are chosen because they are of direct interest.

E.g., we wish to study the effect of a herbide treatment at three levels:  control, label application rate, and

twice label rate.

Groups means are considered fixed, so this is a fixed-effects model.

In some cases the levels of a factor are selected as representative of a broader population.  

E.g., we wish to study the effect of degree of invasion by a nonnative grass on small mammal density.  

If we were interested in particular levels of invasion we could choose a fixed-effect approach.

Instead we could study the degree of invasion in general by choosing samples (and therefore the particular

factor levels studied) from among all of those available.  

Because factor levels are chosen at random, and the groups means are a random sample from a population

of means, this is a random-effects model.

W hen is a random-effects model appropriate?

1.  If inference to a larger set is desired

2.  If the groups represent a random sample of a larger set

The first question trigger a random-effects approach and the second question justifies the broader

inference.

In the fixed-effect model, sample i is considered to be a random sample from a normal population with mean

: and variance F . 2

The model has I + 1 parameters:  I means + variance F2

iIn the random-effects model, the :  means are thought to be a random sample from a normal population

:with mean : and variance F .  2

The model has 3 parameters: 
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• the observed mean :, 

• the within-group variance F2 

:• the among-group variance F . 2

:Analysis of a one-way random-effects model involves a test of whether F  is zero and an estimate of the2

: :ratio F /(F  + F ).  2 2 2

This ratio is between 0 and 1; it = 0 when there is no among-group variance and it = 1 when there is no

within-group variance.

Because the denominator describes the total variance of the measurements, the ratio is the proportion of

the total variance of the measurements that is explained by among-group variance.
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' RNR 613 — Repeated-Measures Experimental Designs

Appropriate when multiple measurements made on the same experimental unit.  

Key:  experimental units or sampling units measured more than once.

Note: a) a single characteristic of each unit is measured on more than one occasion

b) multiple characteristics of the same unit are measured

Repeated measures are designs where the same characteristic (response variable) is measured on multiple

occasions, often through time or under different conditions.  

Experimental units often called “subjects” in these designs.  

In essence, each experimental unit is treated as its own block.  

Like blocks, effects about specific subjects may or may not be of interest to the researcher, but they must be

included in the model so that SSs are partitioned appropriately.  

Other names for RM designs:

' within-subject designs

' treatment-by-subject designs

Types of Repeated Measures Studies

Longitudinal Studies — Repeated measurements are of the same variable on the same subject at different

points in time. 

Crossover Experiments — Each subject receives more than one treatment; the order in which the

treatments are received by each subject is randomized.  

Split-Plot Experiments with Repeated Measurements — Examine two separate treatments, with two

different randomizations; have features of both longitudinal and crossover experiments.  

First randomization allocates experimental units to different levels of the first treatment.  

Second randomization determines the temporal sequence or spatial location for all levels of a

second treatment. 

Why might these designs be beneficial?

W hen all subjects can receive all treatments, then the benefits parallel those of randomized blocks.  

Specifically, when there is substantial variation among subjects, more precise estimates of treatment effects

are achieved by within-subject comparisons (removes between-subject variation). 

Oat-bran example in Sleuth...   

Assess the effect of oat bran on cholesterol.  For each subject a baseline cholesterol level was measured,

then they received a high-fiber and low-fiber diet, each for 6 weeks. 

Univariate Approach:  One Experimental Factor

Example: Assess the effects of 3 drugs on blood cholesterol (mg) in animals.  All 7 subject were treated with

all 3 drugs for some period of time; the order was randomized. 

 



140

Null and alternate hypotheses for this 1-factor repeated-measures experiment are:

o 1 2 3H :  Mean cholesterol is the same on all 3 drugs (:  = :  = : ). 

aH :  Mean cholesterol differs among drugs.  

Data can be tabulated where i columns represent i different treatments, and j rows represent j subjects: 

jSubject Drug 1 Drug 2 Drug 3 Total (S )

1 164 152 178 494

2 202 181 222 605

3 143 136 132 411

4 210 194 216 620

5 228 219 245 692

6 173 159 182 514

7 161 157 165 483

iTotal (G ) 1281 1198 1340 3819

S = sum of responses from all treatments i for each Subject j, 

G  = sum of responses from all subjects j for each treatment Group i

ij i jGrand total of all data '' y  equals both ' G  and ' S

Number of subjects (j) is the number of experimental units (n) and the number of total observations in the study is N

(N = n x i). 

Profile Plot

Profile plots illustrate variation within subjects...

Drug n mean SE

1 7 183 11.61

2 7 171.14 10.76

3 7 191.43 14.56
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Partition the Sum of Squares

ijCalculate the SS Total, which is the sum of the squared differences between y  and 6y.. 

Next, SS Total into SS among-subjects and SS within-subjects:   

ij C is a correction factor (='' y /N); bookkeeping to subtract a quantity included in the calculation of both

within-subject and among-subject SS.  

SS within-subject is found by subtraction:   SS within-subject = SS total – SS among-subject

Total df, N – 1, are partitioned between

among-subject df, which = n – 1 

within-subject df = total df – among-subject df =  n(i – 1).  

Lastly, partition the within-subject variability into treatment SS

and that unexplained by both treatments and subjects: 

SS remainder = SS within-subjects – SS treatment

SS remainder is the treatment x subject interaction (conceptually identical to a block x treatment interaction

in a RBD), which is the all-important estimate of experimental error, or SS error.  

SS remainder (or SS error) measures how similarly subjects responded to treatments. 

The associated df are: 

treatment df = i – 1

remainder df = within-subject df – treatment df = (i–1)(n–1). 

The appropriate F-statistic for treatment effect is:  

F = MS treatment/MS error.  

The test for a subject effect is usually not relevant to the null hypothesis, but is:  F = MS among-subject/ MS

error.  

To use JMP (or any other package) to calculate F-tests with the appropriate SS’s and df’s:  

• identify the response (Y), 

• identify subjects (among-subjects) as a blocking factor

• identify treatment (within-subjects).  

By identifying subjects as a factor, the SS attributable to differences among-subjects is removed from

experimental error.  

The within-subjects SS then contains both the treatment effect and the remainder (the drug x subject

interaction which is estimate of error used for testing).  
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Analysis of Variance

Source DF Sum of Squares Mean Square F Ratio

Model 8 20185.238 2523.15 43.5444

Error 12 695.333 57.94 Prob > F

C. Total 20 20880.571 <.0001

Effect Tests

Source Nparm DF Sum of Squares F Ratio Prob > F

Subject 6 6 18731.238 53.8770 <.0001

Drug 2 2 1454.000 12.5465 0.0011

W ith these components, build the following ANOVA table:  

Source of Variation SS df MS F P

Among-subjects 18731.24 6

W ithin-subjects 2149.33 14

        Drugs 1454.00 2 727.00 12.6 0.0011

        Error (Subject x Drugs) 695.33 12 57.94

Total 20880.57 20

2,20Conclude there is strong evidence for a drug effect on cholesterol (F  = 12.6, P = 0.0011).  

Had we not identified subjects in the model, the treatment effect would not have been judged significant at any

2,20reasonable " (F  = 0.67, P = 0.52). 

Note that using the univariate approach above, data are entered as one measurement per row... such as:

Subject Choles Drug

1 164 1

2 202 1

3 143 1

4 210 1

5 228 1

6 173 1

7 161 1

1 152 2

2 181 2

3 136 2

4 194 2

5 219 2

...

Multivariate Approach: Same Example

1 2 3In multivariate analyses, multiple measurements of the response (Y , Y , Y ) for each subject are considered

simultaneously and are entered on the same row in a data table. 

In JMP, choose all responses, select the "MANOVA" personality, then "Run Model."

In the subsequent Manova Fit dialog, you must specify the methods to assess interrelationships among Y’s

(Response Specification), which are sets of linear contrasts among Y’s.  
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Common response designs (M-matrices) include:  

Repeat. Meas. longitudinal designs; it is both Sum  and Contrast responses.

Sum sum of all responses, one value

Identity each response, the identity matrix

Contrast each response compared to the first

Helmert each response versus the ones after it, except the last

Profile each response versus all others, except the last

Mean each response versus the mean of the others, except the last

Custom any set of contrasts you choose

In an example with 3 measurements per subject:

Sum yields:  

Drug1 Drug2 Drug3

1 1 1

Contrast yields:

Drug1 Drug2 Drug3

-1 1 0

-1 0 1

Identity yields:

Drug1 Drug2 Drug3

1 0 0

0 1 0

0 0 1

Repeated, which is equivalent to specifying is both Sum  [between-subject effects] and Contrast [within-

subject effects]) yields both:

Between subjects

Drug1 Drug2 Drug3

1 1 1

Within subjects

Drug1 Drug2 Drug3

-1 1 0

-1 0 1

The appropriate response specification depends on your question and will affect your results.

In the Drug example, 

Results for a repeated measures specification are:  

Drugs (within subjects)

Test Value Exact F NumDF DenDF Prob>F

F Test 5.1620662 12.9052 2 5 0.0106
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Results for an identity specification are:  

Intercept

Test Value Exact F NumDF DenDF Prob>F

F Test 65.658749 87.5450 3 4 0.0004

The M-transformed parameter estimates, which in this case are mean responses for each drug, depend on

the response specification, which is why the result depends on the M-matrix specified:

 Drug1 Drug2 Drug3

Intercept 183 171.14 191.43

Univariate or Multivariate Approaches?

Univariate repeated-measures analyses assume that treatment responses are equally correlated among

pairs of subjects in the study.  

That is, responses of subject 1 and 2 should be correlated with those of subject 2 and 3, and so forth.  This

is called compound symmetry, which when coupled with the usual ANOVA assumption of homogeneity of

variances among groups is called sphericity.  

The Sphericity assumption is necessary for using univariate F-tests for within-subject effects.  

If violated, and errors are confirmed to be nonspherical, then an F-test with Greenhouse-Geisser or

Huynh-Feldt adjusted degrees of freedom can be used. 

In a multivariate setting, all responses from the same subject are considered simultaneously, and the

correlation among responses accounted for by the test statistic.  In the two-response case:

1 2where t  and t  are Student’s t-ratios for each response, and R is the sample correlation coefficient between

responses. W hen multiplied by a degrees-of-freedom factor, Hoetelling’s T  has an F- distribution.  2

Hence, multivariate repeated-measures analyses do not have the same restrictive assumptions as

univariate analyses.  Plus, multivariate tests are the only type that are appropriate for true multivariate

responses.  
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