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' RNR 613 — Proportions and Odds

So far: tools for continuous response variables and continuous or categorical explanatory variables

Now:  tools for categorical response variables

Common when the response can only take on a limited number of possibilities. 

Example. Investigate suitability of 3 host plants for an insect. 

Of 50 eggs placed on each host, survival / mortality was 40/10, 35/15, and 25/25. 

Host is the explanatory variable (3 levels), and the response variable has 2 levels, survived or died.

Host Plant Alive Dead

A 40 10

B 35 15

C 25 25

Types of categorical responses:

• Binomial or Binary (2 categories):  present or absent; sick or healthy; male or female.

• Multinomial (>2 categories):  race (black, white, etc.); results of a taste test (4 alternatives); hair color.  

For categorical responses, we can calculate a probability for each response represented and they will sum

to 1.

Binary response variables

For continuous responses, we can describe populations by their means.  

For binary responses, we can describe populations with a proportion that is analogous role to the mean. 

Define the response as 1 for a yes or a success and 0 for a no or a failure.  

Average of a binary response variable in a population is the proportion of members in the population

classified as a yes.

Example: A population with 90 yes and 10 no. 

Average = B = (90 x 1) + (10 x 0) / 100 = 0.90

So B is the proportion of "yes" responses in a population, which is the mean response.  

Tools for analysis of continuous response variables assume that the mean response and its variance are

independent: 

• The distribution of the residuals is homogenous across levels of the explanatory variable(s)

• Average size of these residuals (Error MS) provides a basis for assessing the effect of explanatory

variables.

In contrast, variance of binary variables is determined completely by its mean:   Variance{B} = B(1 – B).

• Variance of B is a function of the mean; it is highest at 0.5 and lowest near 0 or 1.  
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• There is no paramater analagous to F .  2

Example: A population of 100 has 50 black observations (Y = 1) and 50 blue observation (Y = 0).  

The mean (B) for color is 0.50.  

The variance of B is:  [ 50 (1 – 0.5)  + 50 (0 – 0.5)  ] / 100 = 0.25         [ 0.5(1 - 0.5) = 0.25) ]2 2

Example: Another population of 100 has 90 black and 10 blue.

Here B = 0.9 and variance(B) = 0.09.  

Odds

Can describe a binary variable using odds instead of the proportion of yes outcomes.  The corresponding

odds of yes outcomes are:

Example: Proportion of colds in the placebo group for the vitamin C experiment (B) was 335/411 = 0.82.  The

odds of getting a cold in the placebo group (T) = 335/76 = 4.4.  

So the odds of getting a cold in the placebo were about 4 to 1; about 4 people got sick to every 1

that did not. 

Example: An event with chances of 0.95 has odds of 19 to 1 (0.95 / 0.05 = 19) in favor of its occurrence.  

An event with chances of 0.05 has odds of 19 to 1 (0.05 / 0.95 = 1/19) against its occurrence. 

Numerical factoids about odds:

1. Odds vary between 0 and 4; proportions vary between 0 and 1.

2. A proportion of ½ corresponds to odds of 1; these are called “equal odds."

3. Odds are undefined for proportions equal to 0 or 1.

4. If the odds of a yes outcome are T, the odds of a no are 1/T.

yes noT  = 3 to 1; T  = 1 to 3

5. If the odds of a yes outcome are T, then the probability (or population proportion) of yes is

B = T / (1+ T). 

yesT  = 3 to 1; B = probability of yes = 3 / (3+1) = 0.75.

noT  = 1 to 3; 1 - B = probability of no = 0.33 / (0.33 + 1) = 0.25. 

Ratio of Two Odds

1 2A useful alternative to the difference in proportions between two populations B  and B  is the odds ratio,

2 1N = T /T

Odds are advantageous for several reasons (p. 540), one of which is that they lends themselves to

regression-type analyses.  

Example: Proportion of colds in the vitamin C group was 302/407 = 0.74, so the odds of getting a cold were

302/105 = 2.87 or about 3 to 1; that is, about 3 people got sick to every 1 that did not. 

The odds ratio between placebo and vitamin C groups was estimated to be 4.408/2.876 = 1.53.  
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The odds of getting a cold in the placebo group were 1.53 times as large as the odds of getting a

cold in the vitamin C group.  

Larger odds are traditionally placed in the numerator, which yields odds in favor of an event, rather than

odds against the event.  

Differences Between Proportions or Odds Ratios

For large samples, two porportions or two odds can be compared with a Z-test.

A test for equal proportions is:

0where SE , which is appropriate when testing that the null of equal proportions:

cwhere B  is the sample proportion from the combined sample.

The appropriate SE for a confidence interval for the difference in proportions is based on a model for

estimating separate proportions: 

A test for equality of odds is:

0where SE , which is appropriate when testing the null of equal proportions:

For odds, the log of the ratios has better distributional properties. 

Example: Vitamin C and colds.  

1 1Placebo group:  B  = 0.82; T  = 4.408

2 2Vitamin C group:  B  = 0.74; T  = 2.876

N = 4.408/2.876 = 1.533; log(N) = 0.427

SE log(N) = 0.170

95% CI for log(N) = 0.427 ± 1.96 (0.170) = 0.094 to 0.760

95% CI for N = e  to e  = 1.10 to 2.140.094 0.760

Z = 0.427/0.170 = 2.51, P = 0.0059
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The odds of a cold for the placebo group were 1.53 times the odds of a cold for the vitamin C

(95% CI = 1.10 to 2.14), Z = 2.51, P = 0.0059.  

' RNR 613 — Tables of Counts

A single, binary response from each subject (0 or 1) can be viewed as a tables of counts.  

Number of subjects falling in each cross-classification of a row factor and a column factor.

Example Donner Party.  Trapped by early snow in October 1846 in the Sierra Nevadas.  Total of 87 people,

40 of whom died by April 1847.  W e consider the 45 people aged $15, 25 (55%) of which died.  

Survived

Female 0 (no) 1 (yes)

0 (male) 10 20 30

1 (female) 10 5 15

20 25 45

W ith binary counts, often interested in proportions of events and state conclusions as odds or odds ratios.  

Recall that the mean of a binary response is B, the proportion of positive responses; its odds are:

T = B/(1–B).  

1 2 2 1W hen two populations have proportions B  and B , with corresponding odds T  and T , a useful alternative

2 1 2 1to the difference in proportions B  – B  is the odds ratio T /T .  

2 x 2 Tables of Counts

o 2 1 o 2 1Relevant null hypotheses are either:    H : B  – B  = 0     or     H : T /T  = 1

2 1 2 1where B  and B  are population proportions and T and T  are the corresponding odds.   

Two types of hypotheses from tables of counts: 

Homogeneity and Independence.  

1. Hypotheses of homogeneity are appropriate when you can think of two populations, each with two

categories of response; one factor is a clear response.

The question is whether the distribution of the response is the same across populations.

E.g. W hether gender affected whether or not an individual was promoted.  

2. Hypotheses of independence are appropriate when you can think of one population with four categories

of response; neither factor is a response.  

The question is whether there is an association between row and column factors where there is no

response. 

E.g. W hether or not beer preference (ale or lager) was associated with snack preference (chips or

pretzels). 

* Choice of hypothesis affects only the interpretation of results but not the calculations, statistics, or

P-values.
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Anatomy of a 2 x 2 Table

Row factor

(explanatory)

Column factor   (response)

Level 1 Level 2 Row totals

11 12 1Level 1 n n R

21 22 2Level 2 n n R

1 2Column totals C C Grand total = T

Marginal totals are the Column totals and Row totals, both of which sum to the Grand total.

Example: Coffee Drinking and Sexual Activity

Responses of 225 married women (>60 yrs) to the questions: 

1.  Are you sexually active?  

2.  Do you drink coffee?

Drink 

Coffee?

Sexually Active?

Yes No

Yes 15 25 40

No 115 70 185

130 95 225

• Sample proportion (B$ ) of coffee-drinking women that are sexually active = 15/40 = 0.375  

• Sample variance = B$ (1 – B$ ) / n = 0.375(1 – 0.375)/40 = 0.0059

• Standard error = %(Var [B$ ]) = 0.0766

• 95% Confidence Interval for B$  = B$  ± 1.96 SE(B$ ) =

0.375 ± 1.96(0.076) = (0.225, 0.525)

Sample proportions of women who do drink coffee and are sexually active and those that do not drink

coffee and are sexually active:  

1 2B$  =  15/40 = 0.375     B$  = 115/185 = 0.622

1 2Odds: T$  = 0.375/(1 – 0.375) = 15/25 = 0.60; T$  = 0.622/(1–0.622) = 115/70 = 1.64

2 1Ratio:  T$ /T$  = 1.64/0.60 = 2.74

The estimated odds of a woman being sexually active is 2.74 times higher if they do not drink coffee.  
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Sampling Schemes Leading to 2 x 2 Tables

W hether a model for 1 or 2 populations is appropriate depends on the question and on how the data were

collected.

1. Poisson.  A fixed amount of time devoted to collecting a random sample from one population; each

subject falls into 1 of the 4 table cells.  Marginal totals not known in advance. 

Example: For the "coffee drinking" study of older women, researchers spent a fixed amount of time

searching for older women in W ashtenaw County, Michigan.  

2. Multinomial.  Each subject in the sample is categorized into one of several cells.  Similar to Poisson

except that the total sample size (Grand total) is known in advance. 

Example: If researchers had a list of all older women in the county, from which they selected a

sample of women.  

3.  Product Binomial.  Each subject in each population falls into 1 of 2 categories.  Product binomial

indicates there are >1 populations from which samples have been collected.  

a.  Prospective.  Populations defined by the levels of the explanatory factor; random samples

collected from each.  If separate lists of all coffee-drinking and non-coffee drinking women in the

county existed, a random sample would then be collected from each population. 

b.  Retrospective.  Random samples are selected from subpopulations as defined by each level of

the response factor.  The researcher specifies the sample totals to be obtained at each level of their

response factor.  

4. Randomized Binomial Experiment.  The subjects, regardless of how they were obtained, are allocated

randomly to the two levels of the explanatory factor.  Besides the randomization, the “setup” is essentially

the same as in prospective product binomial sampling.  The totals for the explanatory factor are fixed by the

researcher.  

Knowing how data were collected, study objectives, and which marginal totals were fixed determines which

hypothesis (Independence or Homogeneity) is appropriate.  

Marginal Totals Usual Hypotheses

Sampling Scheme Fixed in Advance Independence Homogeneity

Poisson None Y Y

Multinomial Grand total Y Y

Product binomial

       Prospective Row (explanatory) totals Y

       Retrospective Column (response) totals Y

Randomized experim. Row (explanatory) totals Y

Both types of null hypotheses can be stated as:

Row categorization is independent of Column categorization.  

Again, if one category is a response then the hypothesis to test is homogeneity; if not, the hypothesis to test

is independence.  
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Chi-Squared Test for Goodness-of-Fit

A method of comparing observation with theory; approach assumes that the sampled units fall randomly

into cells and that the chance that a unit falls into a particular cell can be estimated from the theory (model)

being tested.  

The number of units that fall into a cell is the cell’s observed count; the number predicted by theory (model)

is the cells expected count. 

The test statistic is calculated for each cell then summed across all cells in the table.  

Has a P  distribution with df = (No. cells) – (No. parameters) – 1.  2

Chi-Squared Test of Independence in a 2 x 2 Table

W hen neither category is a response the hypothesis is one of independence.   

1A 2 x 2 table has 4 cells; the proportion of counts that fall in column 1 is C /T; if the column proportion is

independent of row, this same proportion should fall in both row 1 and row 2.  

1 1 1Because there are R  subjects in row 1, R  x (C /T) of them are expected to fall into column 1.  

By extension, the expected cell count in cell (i, j), if rows (i) and columns (j) are independent, is estimated by

i jR C /T as follows:  

Cell (i, j) Observed Expected

11 1 1(1, 1) n R C /T

12 1 2(1, 2) n R C /T

21 2 1(2, 1) n R C /T

22 2 2(2, 2) n R C /T

The pattern for determining an estimate for an expected cell count is to multiply the marginal totals in the

same row and the same column together, then divide by the grand total.  

So testing the hypothesis of independence involves:

1.  Estimate expected cell counts.

2.  Compute the P  using the previous formula.2

3.  Find the p-value from a P  distribution with 1 df.  2
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Example: Death penalty and Race of victim (ignoring aggravation level of crime)

Observed

Race of victim

Death Penalty

Yes No Totals

W hite 45 85 130

Black 14 218 232

Totals 59 303 362

Expected [from marginals, e.g., 21.9 = (130)(59)/(362)]

Race of victim

Death Penalty

Yes No

W hite 21.19 108.81

Black 37.81 194.19

P  = (45 – 21.19) /21.19 +   (85 – 108.81) /108.81 + (14 – 37.81) /37.81 + (218 – 194.19) /194.19 = 49.892 2 2 2 2

1P  = 49.89, P < 0.0001, so conclude convincingly that the death penalty sentence and race of the victim are2

not independent.  

The expected cell counts obtained under the hypothesis of independence are the same as expected cell

counts under the hypothesis of homogeneity.  

Therefore, the P  statistic and P-values from the P  test of independence and the P  test of homogeneity are2 2 2

identical.  

Limitations

P  tests of independence and homogeneity extend logically from 2 x 2 to r x c tables of counts; however,2

they are uninformative.  

1.  They produce only a P-value and have no associated parameter to describe the degree of dependence

(effect).  

2.  The alternative hypothesis—that the rows and columns are not independent—is very general.  

W hen >2 rows or columns are involved, there may be a more specific form of dependence to explore using

logistic regression for binomial counts or log-linear regression for Poisson counts.  

Fisher’s Exact Test for 2 x 2 Tables 

Another limitation of P  tests occurs if sample sizes in any cell are small (<5).  In these cases, Fisher’s Exact2

Test is appropriate as it is for tests of any sample sizes. 

This is a permutation test, which generates a P-value based on the number of possible regroupings of N

1 2observations into two groups of size n  + n .  

The total number of permutations possible becomes the P-value’s denominator; the numerator becomes

the number of regroupings that yield a statistic (say proportion or mean) $ what was observed.  
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So, the one-sided P-value from a permutation test is the actual proportion of groupings that leads to values

1 2 of B$  – B$ $ the one observed.  

Fisher’s Exact Test provides the exact P-value for all hypotheses whereas Pearson’s provides only an

approximate P-value.  

So why use other tests?  

If a computer is available and all that is required is a test, then there is no reason to use any test other than

Fisher’s. 

Other Related Tests

Mantel-Haenszel Test 

a test for equal odds when there are several 2 x 2 tables involved, one for each level of a

confounding or blocking factor.  Compares the odds in two groups after accounting for the effect of

a blocking or confounding variable.  

For example, if we examined Death penalty and Race data for several Aggravation Levels (i.e., there would

be as many 2 x 2 tables as aggravation levels), then this would be an appropriate test.  

Also, if you instead chose to consider the response to be Death Penalty, you could use Logistic Regression

to model variation in the binary response by Race and Aggravation.


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9

