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RNR/ENTO  613 –  Categorical Responses – Logistic Regression 
 
Logistic Regression for binary response variable 
 
Logistic regression analysis describes how a binary (0 or 1) response variable is 
associated with a set of explanatory variables (categorical or continuous). 
 
The mean of a binary variable is a probability (π).  The logistic regression model relates 
that probability, through a logistic function, to variation in the explanatory variables.   
 
Equivalently, the logistic regression model relates the log odds [log (π / 1 - π)] in a linear 
way to variation in the explanatory variables. 
 

Odds 

 
One way to quantify a binary variable is to use odds instead of proportions.  If π is a 
population proportion of yes outcomes, the corresponding odds of a yes outcome are: 
 

( )π
πω
−

=
1

= 
no a of p
yes a of p

= 
no n
yes n

 

 
Example:  The proportion of cold cases in the vitamin C group (Sleuth Chap. 18) was 
0.75, or the odds of getting a cold in the vitamin C group were 3 to 1 (3 = 0.75 / 0.25). 
The odds of getting a cold were about 3 to 1 for vitamin C consumers; 3 persons got sick 
for every individual whom did not.  
 
When using odds, it is usual to cite the larger number first. 
 

Ex:   An event with chances of 0.95 has odds of 19 to 1 (0.95 / 0.05 = 19) in favor 
of its occurrence. 

 
An event with chances of 0.05 has odds of 19 to 1 (0.05 / 0.95= 1/19) 
against its occurrence. 

 
Some facts about odds: 
 
1. A proportion of ½ corresponds to odds of 1, in which case we have “equal odds”. 
2. Odds vary between 0 and ∞, proportions vary between 0 and 1. 
3. Odds are not defined for proportions equal to 0 or 1. 
4. If the odds of a yes outcome are ω, the odds of a no are 1/ω. 

Ex:  ωyes = 3 to 1; ωno  =  1 to 3 or 0.33 to 1  
5. If the odds of an outcome are ω, then the probability of that outcome is π = ω / (1+ω). 

Ex:  ωyes = 3 to 1; π = probability of a yes = 3 / 3 + 1 = 0.75. 
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Logistic Regression is a generalized Linear Model 
 
The natural link function for a binary response variable is the logit or log-odds function, 
where the logit link is ( ) ( )ππ logitg =  = ln[π / (1 - π)] = ln ω. 
 
When we use the logit as a link function, we have the Logistic regression model: 
 
 ( ) XX ppo

 logit βββπ ....11
++=  

 
The log-odds changes linearly as a function of variation in the explanatory variables.  
The practical use and conceptual framework of logistic regression is therefore closely 
related to that of multiple regression. 
 
However, the logit is totally defined by π.  If logit (π) = ln ω = η, then: 
 
 π = exp (η) / [1 + exp (η)].            [because π = ω / (1+ω).]         
 
[the above function that transforms logits into proportions (π) is called the logistic 
function] 
 
Consequently, the logistic regression model also differs importantly from ordinary 
regression:  

1- the variance of π is a function of the mean response 
2- the model contains no additional parameter like σ2 

 
Because logit (π) and π are equivalent, the model: 
 

( ) XX ppo
 logit βββπ ....11

++=  

 
is used for convenience of interpretation (the response is linear). 
 
The mean and variance specifications of that model are: 
 

πμ =}|{Y XX p1 ,....,   ( )ππ −= 1},..... XX p1|Var{Y  
 
Maximum Likelihood versus least squares parameter estimation 
 
In the generalized linear model framework, the method of least squares parameter 
estimation is replaced by maximum likelihood. 
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Recall that the method of least squares chooses regression coefficients that minimize the 
sum of squared residuals.  It minimizes the amount of unexplained variation in the 
response variable.   
 
The method of maximum likelihood flips things around: it chooses the regression 
coefficients that maximize the joint probability of the predicted values.  It maximizes the 
amount of explained variation in the response variable. 
 
Maximum likelihood estimation of regression coefficients for a binary response 
 
Every observation in the data set can only have a response value of 0 or 1.  The 
regression model predicts for each of these observations a probabilityπ̂ i .  To do this, 
 

a) the value for each level of the explanatory variables (e.g. X1 = 1, X2 = 5, X3 
= 3..) are substituted in the regression equation and a logit is obtained 

 
b) the logit value is transformed to a proportion (π) through the logistic 

equation. 
 

c) the probability of obtaining an observed values is called the likelihood of a 
value.  Symbol for likelihood isπ̂ i . 
 

• If a given response is 1, its predicted response isπ̂ i , the predicted probability of a yes 
at that level of the X variables (i.e., x1i. x2i,….xpi). 

 
• If a given response is 0, its predicted response is 1 - π̂ i , the predicted probability of a 

no. 
 

 
The model obtained by maximum likelihood specifies the regression coefficients in 

( ) XX ppo
 logit βββπ ....11

++=  such that the product of all likelihoods is 

maximum.  The maximum likelihood method fits “the best” possible model given the 
data at hand.  
 
It is possible to achieve perfect prediction of the data if there is no overlap between the 
values of the response variable (the y = 1 and y = 0 observations) across the values or 
levels of all explanatory variables.  In such a case, JMP would produce a message that the 
“regression coefficients are unstable”. 
 
Without any overlap between the values of the response variable across the levels of the 
explanatory variable, the product of all likelihoods would be 1 x 1 x 1 x 1……..= 1. 
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In practice however, some 0s and 1s are present together at the same level (s) of the 
explanatory variable (s), so prediction of the model is never perfect (i.e., some π̂ i will be 
different from 1 or 0).    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Interpretation of Odds and Odds Ratio 
 
The logistic regression model is: 
 

( ) XX ppo
 logit βββπ ....11

++=  

 
The logit is the log of the odds (ln (π / 1- π) : thus e logit (π) yields the odds. 
 
So the odds that a response is positive (i.e., Y = 1) at some level of X1,……Xp are: 
 

 e XX ppo
.......... ⎟

⎠
⎞

⎜
⎝
⎛ ++= βββω 11  

 

For example, the odds that Y = 1 at X1 = 0, X2 = 0,…..Xp = 0 equals ( )β o
exp  or e oβ  

 
The ratio of the odds (or odds ratio) that Y = 1 when X1 = A relative to the odds when X1 
= B is:  
 

 ( )e B-A

B

A ][
1β

ω
ω =  

 
when the value of all other explanatory variables in the model are held constant. 
 

Logistic regression for Binary data
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[Recall that when 2 populations are the same, then the odds ratio is: ω2 / ω1 = 1.  Thus a β 
near 0 means that there is no association between an explanatory variable and the 
response (e0 = 1)] 
 
So as X1 increases by 1 unit (i.e. A – B =1), the odds of a response (i.e., Y = 1) changes 
by a multiplicative factor of exp (β1) = e β1, when other variables are held constant. 
 
 
Example:  Survival in the Donner party.  In 1846 the Donner and Reed family travelling 

by covered wagon got stuck in a snow storm in October in the Sierra Nevada.  
By the next April when they were rescued, 40 of the 87 people had died from 
starvation and cold stress.  Anthropologists considered mortality in the 45 
people aged more than 15 years to investigate whether females are better able 
to withstand harsh conditions than man. 

 
The specific question is:  For any given age, were the odds of survival different between 
males and females? 
 
<Display 20.1> 
 
To assess that question, we use JMP to fit the model: 
 
 agefemaleY

o βββ 21
++=  

 
Response(Y):    
 
Survival, coded as 0 = survived, 1 = died   {nominal}** 
 
Explanatory (X’s):    
 
Sex: indicator variable, female =1, male = 0  {continuous} 
    
Age       {continuous} 
 
**  NOTE: 
 
A logistic regression usually model the probability that Y = yes.   
 
When you code the response as numbers (e.g. 0 - 1), because you specify the response 
variable as NOMINAL, JMP always fit the probability of the event corresponding to 
the SMALLEST number.  
 
For the example above, if you really wanted to code survived = 1, you would have to 
code died =2, if you want to model the probability of survival. 
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Donner party, JMP analysis: 
 
Coding:    Survived = 0, Died = 1  {nominal} 
  Age     {continuous} 
  Female = 1, Male = 0    {continuous = INDICATOR variable} 
 
Use the Fit Model platform, with survival as the Y, and Sex and Age as the X: 
 
Parameter Estimates 
Term   Estimate Std Error ChiSquare Prob>ChiSq 
Intercept  1.63311508 1.1102437 2.16 0.1413 
fem ind  1.5972907 0.7555008 4.47 0.0345* 
Age  -0.0782039 0.0372874 4.40 0.0360* 
 
Effect Likelihood Ratio Tests 
 
Source 

 
Nparm 

 
DF 

L-R 
ChiSquare 

 
Prob>ChiSq 

 

fem ind 1 1 5.03443702 0.0248*  
Age 1 1 6.02999061 0.0141*  
 
Both age and female explain a significant amount of variation in the probability of 
survival (Y).  The regression equation is: 
 
 Logit (π) = 1.63      –      0.078 age +       1.60 female 
         (1.11)         (0.037)               (0.76) 
 
Each estimated coefficient βj in the logistic regression has a normal sampling 
distribution, which implies that the standard normal distribution can be used for 
statistical inferences (i.e. Z-tests and CI estimation with Z-distribution: JMP uses related 
X2 tests).  Tests provided under “Parameter estimates” are based on a normal 
approximation are called Wald’s tests.  They produce good approximations if sample size 
is large. 
 
Confidence intervals for regression coefficients can be obtained.  They are computed 
from maximum likelihood iterations.   
 
Likelihood ratio tests (explained later) are better to test the significance of effects 
included in a model. 
 
******************************************************************** 
Note that you can also fit this model with the Generalized Linear Model approach.    
 
To do this in the Fit Model platform, enter survival as Y (categorical) and Age and Sex as 
before.  Then chose the Generalized Linear Model Personality, Binomial Distribution, 
and Logit Link Function. 
********************************************************************* 
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Test and Interpretation of single coefficients 
 
General Age effect (continuous variable): 
 
The estimated coefficient for age is – 0.078, with SE = 0.037.   
 
The 95 % CI is:   -0.162, -0.014. 
 
Taking the anti-logarithm of the estimate and CI endpoints, we get the following 
summary statement: 
 
It is estimated that the odds of survival change by a factor 0.92 (i.e. e –0.078) for each one 
year increase in age (95% CI for this multiplicative change is 0.85 to 0.99).  So the odds 
of survival decrease by 0.92, or by 8 %, for every extra year of age (averaging for gender 
effect). 
 
 
Specific prediction at different Ages: 
 
For example, compare odds of survival for women 50 years old with women 20 years 

old.  The odds ratio is calculated as ( )]exp[
2

BA
b

a −= βω
ω : 

So =ω
ω

20

50 exp [- 0.078 (50 – 20)] = 0.096, or about 1 /10.  So the odds of survival of 

20-year-old women were about 10 times the odds of survival of 50-year-old women. 
 
 
Effect of Sex (continuous-Coded as DUMMY variable): 
 
The odds-ratio of survival for women (female = 1 = A) compared to men (female = 0 = 
B) of the same age is: 
 
 Exp[1.60 (1 – 0)} = 4.94 
 
Thus the odds of survival were about five times greater for women than men of the same 
age (i.e., after correcting for the effect of Age). 
 
Prediction of a probability of survival (i.e., finding the likelihood of a value, π̂ i ): 
 
We use the logistic function that relates the logit to π. 
 
For example, the predicted log-odds survival for a 30-year-old male are: 
 
 Logit (π) = 1.63 – 0.078 age + 1.60 female 
     = 1.63 - 0.078 (30) + 1.60 (0) 
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      = 1.63 – 2.34 + 0 
              = - 0.71 
 
The inverse of the logit function is the logistic function: 
 
 π = exp (η) / [1 + exp (η)]. 
 
Where η = logit (π).  So: 
 
 π̂ = exp (- 0.71) / [1 + exp (- 0.71)] = 0.33 
 
Indicating that a 30 year-old male had a 0.33 chance of surviving the winter. 
 
Or similarly: 
 
Logit (π) = ln (Odds) = - 0.71 
 
Odds = e – 0.71 = 0.492 
 
π = 0.49 / (0.49 +1) = 0.33             [because π = ω / (1+ω)] 
 
 
 
Test for several coefficients 
 
Recall that to compare the simultaneous effect of many explanatory variables in multiple 
regression, we compared the difference between the error sums of squares associated 
with a full and reduced model.  {Extra SS test:  F = [(ESS reduced – ESS full) / Extra df] 
/ Best estimate of σ 2 }. 
 
In logistic regression the residuals are not homogenous across levels of the explanatory 
variable, so the Extra SS method cannot be used with untransformed residuals. 
 
Transformed residuals are used instead (to normalize their distribution): one type of 
transformed residuals is called the Deviance residual.  With such residuals, the Extra 
Sum of Square test becomes a Deviance test. 
 
Instead of using yi - π̂ i  to calculate residuals, the deviations are transformed by a 
function, g(x), which makes the residuals homogenous across the values of X. 
 
The function chosen is g(x) = twice the logarithm of the likelihood function (i.e., 2 × log 
(yi - π̂ i )    
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What happens when we take twice the logarithm of the likelihood function?   
 
g(x) for predicted values, π̂ i : 
 
The likelihood of the ith mean isπ̂ i .  We simply take twice the log of that value:  g(π̂ i ) 

= 2 log (π̂ i ).  
 
 
g(x) for the observed values, yi: 
 
The log likelihood for yi = 1 is log yi = log 1 = 0 
The log likelihood for yi = 0 is log (1 – yi) =  log 1 = 0 
 
Because the log likelihood of yi = 1 or yi = 0 is 0, g (yi - π̂ i ) is:  
 
   g (yi - π̂ i )  =   2 log(yi) – 2 log(π̂ i ) 

    = 0 - 2 log (π̂ i ) 

=    - 2 log (π̂ i ) 
 

To account for whether a given yi is greater (= 1) or lower (= 0) than its estimated mean 
(π̂ i ), the deviance residual is defined as: 
 

( )π̂ i2log-+  if yi =1, and 

( )π̂ i2log-- if yi =0. 
 
The Deviance is the sum of the squared deviance residuals:  
 
 Deviance = ( )∑− π̂log2 i      where  π̂ i = π for yi = 1 

                         π̂ i = 1 - π for yi = 0 
 
It represents the discrepancy between the observed responses and those predicted by the 
fitted model (and is equivalent to the error SS in multiple regression). 
 
The Drop-in-deviance test is analogous to the Extra-sum-of-squares F-test in ordinary 
regression:  
 

Drop in deviance =  Deviance from reduced model – Deviance from  full 
model 
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Drop in df =  Difference in number of parameters (full model – 
reduced model) 

 
If the drop in deviance is small, the reduced model explains about the same amount of 
variation in the response (Y) as the full model.   
 
If the drop in deviance is large, the reduced model is not adequate as compared to the full 
model. 
 
The drop in deviance test is important to assess whether a model fits well because the 
residuals from a logistic regression with binary responses (0-1) cannot be used to do this 
(they fall on 2 parallel lines on each side of the fitted regression line). 
 
Drop in deviance statistics have a χ2 distribution with d df, where d is the difference in 
number of parameters.  A small p-value indicates that the reduced model is not adequate. 
 
Donner Party example 
 
Is there a difference between male and female survival probability after accounting for 
the effect of age?   
 
Full model:  logit (π) = femaleage

2o βββ ++
1

 

Reduced model: logit (π) = age
o ββ 1
+  

 
Full model 
Whole Model Test 
Model  -LogLikelihood           DF ChiSquare Prob>ChiSq 
Difference             5.285129             2 10.57026 0.0051* 
Full           25.628142    
Reduced           30.913271    
 
   
RSquare (U) 0.1710 
Observations (or Sum 
Wgts) 

45 

  
Reduced model 
Whole Model Test 
Model  -LogLikelihood DF ChiSquare Prob>ChiSq 
Difference 2.767910 1 5.53582 0.0186* 
Full 28.145361  
Reduced 30.913271  
 
 
RSquare (U) 0.0895
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Observations (or Sum 
Wgts) 

45

 
  
By default, JMP reports a full and reduced model for each logistic regression as a test for 
the overall model: this is called the Whole-Model Test.   
 
The Whole-Model Test treats the model you specify as a full model and compares it to a 
reduced model, which is a model with an intercept only.  So the Whole-Model Test is 
equivalent to a drop in deviance test that investigates whether all coefficients in the 
model (except the intercept term) are zero.   
 
JMP does not report model Deviance.  JMP reports the value of the - Log Likelihood of a 
Model: 
 
 - Log Likelihood = ( )∑− π̂log i , 
 
which is very similar to the deviance [Deviance = ( )∑− π̂log2 i ]. 
 
The – log likelihood is calculated by JMP by summing the negative logarithm of the 
predicted probabilities (π̂ i ).  
 
Maximizing the product of all likelihoods (the maximum value of this product is 1) is the 
same as minimizing the negative sum of the logs of the likelihoods.  
 
The maximum possible value of the product of all likelihoods is 1.  This yields - ln 1 = 0;  
A smaller product of likelihoods, 0.3, would yield - ln 0.3 = 1.2;  
A smaller product of likelihoods, 0.1, would yield - ln 0.1 = 2.3;  
The above full model has a – log likelihood of 28.14, which means the product of all 
likelihoods is < 0.0000001) 
 
So the bigger the difference in –Log likelihood between the full and reduced model, the 
better is the fit of the full model. 
 
You can therefore use the value of the – log likelihood to perform a drop-in-deviance test, 
by comparing twice the difference in the - log likelihood between full and reduced 
models: 
 
 χ2 = (2 * -log likelihood reduced)  - (2 * -log likelihood full) 
 
in the above example, 
 
 χ2 = (2 * 28.14) – (2 * 25.63) =  5.03, with 3 - 2 df. 
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For a χ2 = 5.03 with 1 df, P = 0.025, suggesting that there was a difference between male 
and female survival probabilities after accounting for age. 
 
The drop in deviance test assessing the effect of a single explanatory variable is called the 
Likelihood ratio test in JMP. 
 
*** The likelihood ratio test (always provided in JMP) is better than the Wald’s test to 
assess significance of the effect of explanatory variables.*** 
 
 
Logistic Regression for Binomial Responses 
 
The logistic model for binary response variables (0-1) extends to cases when the 
responses are proportions of binary counts (i.e., binomial proportions). 
 
Proportions of binary counts take 2 forms: 
  

a) Grouped binary responses, calculated from a sample (proportion of parasitized 
insects out of samples of 200 insects; proportion of a given number of 50-
year-old patients with lung cancer). 

 
b) Proportion based on a count for individual subjects (proportion of 100 cells 

from each subject with chromosomal aberrations; proportion of times out of 
100 that a baseball player hits the ball). 

 
As for logistic regression for binary response variables, logistic regression for binomial 
proportions models the population proportion or probability (π) through a logit link with 
a linear function of regression coefficients. 
 
Binomial proportion 
 
A binomial response variable is measured as a count of binary events (yes or no) out of a 
total number of observations.  The binomial denominator m does not need to be the same 
for every sample, but it must be known. 
 
This is different from a continuous proportion, which is the ratio of 2 continuous 
variables.  For example, the proportion of fat per unit of weight in ants; the proportion of 
water by weight in leaves, etc…  Continuous proportions do not have a binomial 
distribution.  Continuous proportions as response variables must be handled with least 
squares regression (e.g., ANOVA, linear regression, multiple regression).  
 
Example:  We investigate the number of bird species that got extinct on 18 islands during 
a 10-year period.  Species were monitored on each island in 1949.  All the species present 
were considered “at risk”.  Presence / absence was monitored again 10 years later: 
species that were no longer present were considered “extinct”.  The response variable for 
each islands takes this form:  # extinct / # at risk.   



 170

 
Example of data for the species extinction problem: 
 
ISLAND EXTINCT / NOT EXTINCT 
Ulkokrunni 5/70 
Maakrunni 3/64 
Ristikari 10/56 
Etc….. Etc…. 
 
 
The interpretation and framework for analysis of logistic regression for binomial 
proportions is very similar to logistic regression for binary variables. 
 
For binomial proportions we have: 
 

1. Y is a binomial count, where Yi = sum of all 1’s out of the mi binary 
responses in a sample. 

 
2. π i  = Yi / mi is the observed response proportion for observation i.  

 
3. We fit the model logit(π) = XX ppo βββ +++ ....11

, which yields 

predicted responses (π̂ i ) for each level of the explanatory variables. 
 
Example:  Island Size and Bird Extinction.  Is extinction rate is birds a function of the 
area available to a species?  
 
Model Assessment: 
 
1.  Scatterplot of observed logits VS explanatory variable 

Every observation i (sample) has a response proportion: m
Y

i

i
i =π : the observed logit 

is ( ) ( )⎥⎦
⎤

⎢⎣
⎡

−=⎥⎦
⎤

⎢⎣
⎡

− π
π

i

i

ii

i

Ym
Ylog 1log .   

 
 
Plotting the observed logits vs one or more explanatory variable is useful for visual 
examination of linearity (in Fit Y by X or Multivariate platform in JMP).  It parallels the 
use of scatterplots in ordinary regression.  
 
Example:  Island size and bird extinction example: 
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NOTE.  If some of the observed proportions are either 0 or 1, the logit function is 
undefined: to produce a display, add a small amount to the numerator and denominator 
(e.g., 0.05).   
 
This is not necessary, however, to fit an actual logistic regression model in JMP. 
 
2.  Examination of residuals 
 
Two types of residuals are used in logistic regression for binomial counts:  Deviance 
residuals and Pearson residuals (see Sleuth Chapter 21).  Plotting those as a function of 
predicted values is useful to check whether the assumptions of the model are met. 
 
These residuals are available in the Generalized Linear Model platform.   
 
 
Fitting the Logistic regression Model in JMP 
 
To fit the model using the logistic regression platform (in Fit Model), you need to get a 
data table that looks like this (this could involve using the “Stack” option under Tables): 
 
ISLAND AREA EXTINCTION  COUNT 
A 100 Not Extinct 70 
A 100 Extinct 5 
B 145 Not Extinct 36 
B 145 Extinct 7 
Etc…    
 
Logistic Binomial Analysis: 
 
Response:    Extinction (extinct = 0)  {nominal} 
Explanatory: Log(Area)     {continuous} 
Count        {continuous, Frequency} 
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In Fit Model, choose Extinction as Y, Log (area) as X, Count as frequency. 
 
 
Whole Model Test 
Model  -LogLikelihood DF ChiSquare Prob>ChiSq 
Difference 11.73149 1 23.46298 <.0001 
Full 295.82138  
Reduced 307.55287  
 
 
RSquare (U) 0.0381
Observations (or Sum 
Wgts) 

740

 
 
Parameter Estimates 
Term   Estimate Std Error ChiSquare Prob>ChiSq 
Intercept  -1.4786275 0.1139677 168.33 <.0001 
ln area  -0.2432824 0.0527819 21.24 <.0001 
 
For log odds of Ext/Not Ext 
 
Effect Likelihood Ratio Tests 
 
Source 

 
Nparm 

 
DF 

L-R 
ChiSquare Prob>ChiSq

 

ln area 1 1 23.4629788 <.0001  
 
 
Tests of individual regression coefficients under “Parameter Estimates” are Wald’s tests.   
 
Likelihood ratio tests are drop-in-deviance test. 
 
You may also fit a logistic regression model using the Generalized Linear Model 
platform.   
 
Data should look like this: 
 
ISLAND AREA EXTINCT TOTAL 
Ulkokrunni 185 5 80 
Maakruni 105 3 70 
Ristikari 31 10 76 
Isonkivenletto 9 6 57 
Etc….    
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Personality: Generalized Linear Model 
Distribution: Binomial 
Link function: Logit 
 
Then enter EXTINCT and TOTAL as Y and Log (area) as X. 
 
Whole Model Test 
Model  -LogLikelihood L-R ChiSquare DF Prob>ChiSq 
Difference 11.7314895 23.4630 1 <.0001* 
Full 34.2593747  
Reduced 45.9908642  
 
Goodness Of Fit 
Statistic 

ChiSquare DF Prob>ChiSq

Pearson 7.7603 16 0.9557
Deviance 8.0302 16 0.9480
 

AICc 
73.3187 

 
Parameter Estimates 
Term   Estimate Std Error L-R ChiSquare Prob>ChiSq Lower CL Upper CL
Intercept  -1.478634 0.1139678 209.89025 <.0001* -1.707377 -1.260017 
log(Area)  -0.243294 0.0527826 23.462979 <.0001* -0.349505 -0.142179 
 
Studentized Deviance Residual by Predicted 

 
Output is the same as before (95% CI are provided directly here: they must be requested 
if using Nominal Logistic Regression). 
 
 
Deviance Goodness-of-fit test  
 
Before drawing conclusions based on the analysis above, we must decide whether model 
fit is adequate.  There are many potential reasons why this would not be so: 
 
1) The effects of the explanatory variables are not linear on the logit scale.  In such case 

the model would need extra terms, like quadratic terms ( X 2β ) or interaction terms, 
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to fit the data adequately.  (This could be detected by inspection of scatterplots of Xs 
vs Y) 

 
2) The response counts do not conform to a binomial distribution: There are some 

outliers, or there is Extra-binomial variation in the response (e.g., because the binary 
variables are not independent, important explanatory variables are not included in the 
model, etc…).  

 
A single test, the Deviance Goodness-of-fit test, can be used to address these issues.   
 
Recall that in linear regression with replication, the lack-of-fit test compared the separate-
mean model (one-way ANOVA) to the simpler linear regression model. 
 
In logistic regression for binomial counts, we can compare the observed proportions 
(which are sample means) to the proportions predicted by the reduced model.  To do this, 
the log likelihood of the model of interest is compared to the log likelihood of a model 
fitted to each observed population proportion.  This test is valid only if mi > 5 
(denominator of the binomial counts) for every observations. 
 
The null hypothesis is that the model of interest fits well.  The alternative hypothesis 
depends on the model of interest: 
 
1) If the model contains all terms that might be important, including polynomials (i.e. 

quadratic) and interactions, and there are no obvious outliers, then the alternative 
hypothesis is that there is extra-binomial variation in the data.  In such case, data 
should be analyzed with a modified method: the quasi-likelihood approach provides 
an easy alternative (the test is done by hand after adjusting SE to take into account the 
extra variation; see Sleuth p.622). 
 
Alternatively in the Generalized Regression Platform, ask for “overdispersion tests 
and intervals” and the logistic regression procedure will automatically correct for 
overdispersion! 

 
2) If the model of interest is too simple, then more structure (extra terms) is needed to fit 

the data adequately. 
 
Model of interest: ( ) XX ipiioi logit .....1 ++= ββπ  
 
Saturated model: ( ) απ iilogit =   ( i = 1, 2,…n, where n is the number of 

observations, and α are the observed population proportions) 
 
 
In JMP the Deviance Goodness-of-fit test is called the lack of fit test if the Logistic 
Regression platform is used.  For the Island size and bird extinction example: 
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Lack Of Fit 
 
Source  DF  -LogLikelihood ChiSquare 
Lack Of Fit 15 3.06127  6.122547 
Saturated 16 292.76011  Prob>ChiSq 
Fitted  1 295.82138  0.9776  
 
 
The Degrees of Freedom (DF) for the Saturated model is the number of unique binomial 
responses (here 16 because 2 islands had the same area).  The DF for the fitted model is 
the number of parameters (not counting the intercept).  Here, these are 16 and 1 DF, 
respectively. The Lack of Fit DF is the difference between the Saturated and Fitted 
models, 15.  The lack of Fit chi-square is not significant (χ2

15 = 6.12, P = 0.98), which 
indicates that no extra terms are needed in the model, and that no extra-binomial 
variation is present in those data. 
 
An equivalent test (called Goodness of Fit) is provided in the Generalized Linear Model 
platform. 
 
Final Interpretation (using output from the Logistic Regression platform): 
 
A one unit change in island area was associated with a change in the odds of extinction of 
exp(β) = exp (-0.243).  Because the explanatory variable was logged, we conclude that 
for each doubling of island area, the odds of extinction changed by 2 β (i.e. 2 –0.243), or 
0.84.  In other words, the odds of extinction for a species on an island of size 2A were 84 
% of the odds of extinction on an island of size A.  The 95% CI for this multiplicative 
change was (2 -0.349 – 2 -0.142, i.e. 0.78 – 0.90) 
 
**Results for logistic regression for binomial counts in the last version of JMP differ 
slightly from analyses presented in Sleuth. 
 
 


