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RNR / ENTO 613  _--Inferences Using t-Distributions      
 
Introducing t-tools with permutation tests 
 
The fundamental goal of statistics: to draw inferences on (unknown) population 
parameters using sampling data. 
 
Because the data obtained from sampling are inherently variable, we need to find a way 
to separate variability due to the sampling process from real patterns in the data. 
 
One way to do this is to set a null hypothesis that provides a basis to estimate the 
variability introduced by the sampling process.  The actual statistic (s) computed from the 
sampling data can then be compared to the variability due to sampling expected if the 
null hypothesis is correct. 
 
Permutation (or randomization): 
 

Resampling techniques (e.g. permutation) provide a direct way to estimate the 
expected variability associated with the sampling process.  
 
Ex:  Is there a difference in weight between females and males in the class?   
 
To answer that question, we obtain a sample of 5 males and 5 females and calculate the 
difference between the average weight of those samples: 
 
Wf = 120 lbs; Wm = 160 lbs; Wm – Wf = 40 lbs.  ** It would seem that males are 
heavier than females. 
 
We want to reach a reasonably probable conclusion based on a single sampling event (an 
“experiment”), but we do not know whether the observed difference (40 lbs) is 
meaningful, given that the sampling process always introduce variation that is ultimately 
contained in the statistic computed from samples. 
 
One way to solve this problem is to set a null hypothesis.  A typical hypothesis would be: 
 
Ho: Wm – Wf = 0 
 
If the null hypothesis is correct, i.e. if males and females are from the same population, 
or in other words if males and females do have similar weights, being a female or male is 
irrelevant with respect to weight.  We can thus resample the pooled data, each time 
allocating the 10 observations at random to the category “female” and “male”, with 5 
observations falling in each category. 
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Thus, resampling the data under the Ho of no difference, we obtain something like 
this…… 

Resampling 
event 

“Wf” “Wm” 

1 130 141 
2 151 135 
3 122 179 
4 127 172 

Etc Etc Etc 
 
Resampling many times and each time calculating the statistic Wm –Wf, we generate the 
expected pattern of variation in Wm – Wf under the null hypothesis of no difference 
between males and females.  This pattern of variation in the statistic depends on size of 
the samples and on the true variability in weight (σ) in our population. 
 
We can now compare the statistic computed from the 2 samples we got to the 
distribution generated by the permutation process.  If the statistic computed from the 2 
samples is unusually large, there are 2 possibilities:  
 
a) we obtained a non-representative set of samples (i.e. Ho was correct:  by chance, we 

sampled 5 “extreme” males or females).  This would occur with a probability P, if the 
null hypothesis is correct. 

b) males are indeed heavier than females (i.e. Ho was not correct) 
 
Rejecting Ho in a) is a type 1 error 
Rejecting Ho in b) is appropriate 
 
<<Sleuth Display 1.8 >> 
 
t-tools: 
 
T-tools for comparison of two population means use the same general framework as 
above:   
 
a) set a null hypothesis (generally Ho: no difference between population means) 
b) obtain 2 samples (a single “experiment”) and calculate t-ratio 
c) look at the expected distribution of the statistic (t-ratio) pertaining to the difference 

between the 2 population means if the null hypothesis is true (i.e.,f statistical tables) 
d) compare the t-ratio calculated from sampling data with its expected distribution under 

Ho 
e) reject or do not reject Ho  
 
The differences between t-tools and permutation: 
 
a) the statistic used for inferences is a t-ratio rather than the difference between sample 

averages.   
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b) the distribution of the t-ratio expected, for the sampling process used and if the null 
hypothesis is true, is provided by statistical tables (Student’s t-distribution).   

 
The reason we use a t-ratio is historical: we can predict theoretically the distribution 
of a t-ratio [the output of those predictions are Statistical Tables], but we can only 
predict the distribution of the difference between 2 sample averages empirically [e.g. 
with permutations]).  They had no computers at the beginning of the last century, so 
only the first option was practical…. 

 
<<Sleuth Display 2.10>> 
 
Type of inferences with t-tests  
 
1. Hypothesis testing: Use sample data to determine if a population mean, the 

difference between paired observations, or the difference between 2 population 
means, differ from a hypothesized value.  We test the null hypothesis that μ or μ1 - μ2 
is equal to a hypothesized value (μ0).  

 
Type of Statistical finding: The left hippocampus volume was smaller in twins with 
schizophrenia than in twins without schizophrenia (paired t-test, two-sided p-value = 
0.0061) 

 
2. Confidence intervals: Use sample data to estimate plausible values for a population 

mean, the difference between paired observations, or the difference between 2 
population means.   

 
Type of Statistical finding: The mean hippocampus volume is estimated to be between 
0.07 and 0.33 cm3 larger (95% confidence interval) in twins without schizophrenia 
than in twins with schizophrenia. 
 

Practical Context 
 
 One-sample t-test: Draw inferences on a single population mean.  Example: A 
producer wants to estimate the mean weight of turkeys in her stock because turkeys of a 
given size sell well.   
 
 Paired t-test: Test whether a population mean difference between paired 
observations differs from a previously decided value (often zero).  Example: 
Hippocampus size in 15 pairs of schizophrenic or healthy twins (Sleuth). 
 
 Two-sample t-test: Draw inferences on the difference between two population 
means.  Example: Humerus length of house sparrows that died or survived in a storm 
(Sleuth). 
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One-sample Hypothesis 
 

Context:  Test the null hypothesis that the population mean (μ) is equal to some 
specified value (μ0).   

 
 Example:  What is the average size of turkeys in a flock? 
   

 A producer has a flock of 3500 turkeys.  She wants to know whether 
those turkeys weigh about 25 lbs, which is the size preferred by 
consumers. 

 
 Ho: μo = 25 
 Ha: μo ≠ 25 
 
One sample-hypothesis testing using the Z-Ratio 
 
If the population standard deviation (σ) was known (which is rarely the case), hypothesis 
tests about population means could be based on the standard (Z) normal distribution.  
 
________________________________________________________________________ 
For any normally distributed population of observations, a standard normal distribution is 
obtained by applying a Z transformation: 
 

σ
μ−

=
XZ  

 
The sampling distribution of such Z-ratios is called standard normal because it 
reduces any normal distribution (specified by μ and σ) to a unique standard normal 
distribution, which is centered on 0 and has a standard deviation of 1.  
 
<<FIG 1>> 
________________________________________________________________________ 
 
To test whether μ = μo, we ask how likely we are to observe the measured deviation 
between Y  (our best estimate of μ) and μo.  The answer depends on the value of the Z-
ratio obtained from sampling data.   
 
The Z-ratio of a sample average for a 1-sample hypothesis is:   
 

Z = =
−

n

Y
o

σ
μ

( )YSD
Y

oμ−
  .  (we use SD here because we know the population variance: 

later with t-tools we will use SE). 
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Where 
n

σ  is the standard deviation of sample averages. 

 
<<Fig 2.4, Sleuth>> 
 
If a Z-ratio was calculated for many random samples from a single population, we would 
obtain a standard normal distribution of the Z-ratio (μ = 0, σ =1) only when the null 
hypothesis is correct (that is, when the sampled population is correctly described by the 
null hypothesis).  
 
The greater the difference between μo and μ, the more extreme will be the Z-ratios 
calculated from sample data. 
 
<< FIG 2 >> 
 
When the null hypothesis is correct, we expect a Z-ratio obtained from sampling data to 
be close to zero, i.e. within the range delimited by the chosen critical values with a 
probability 1 - α (e.g. if we choose α = 0.05, 95 % of the Z-ratios should fall within ± 
1.96). 
 
If the Z-ratio is more extreme than the chosen critical value, we reject the statement that 
null hypothesis is correct. 
 
One sample-hypothesis testing using the t-Ratio 
 
In most cases, the value of σ is not known, so the Student’s t-distribution must be used.  
 
The Student’s t-distribution was developed by W. S. Gosset, an employee of the 
Guinness brewery, who published under the pseudonym of “Student”.   
 
The t-ratio is very similar to the z-ratio: 

For a 1-sample hypothesis is: 
 )Y( SE

μo - Y
 = t , where SE 

n
sY =)(  

 
The difference between the t- and z-ratio, and thus between the Z- and the Student’s t-
distribution, is that there is an error associated with estimating SE (Y ) when σ is not 
know. 
 
The smaller the sample size, the lower is the precision of SE (Y ).  The t-distribution was 
derived to compensate for this uncertainty in estimation of SE (Y ). 
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The shape of the t-distribution approaches that of the Z-distribution as n increases.  If n 
→∞, there is no error in estimation of SE (Y ), so the t- and Z-distributions become 
identical. 
 
<< FIG 3>> 
 
So the shape of the Student’s t-distribution depends on the degree of freedom (i.e. 
sample size) used to estimate the unknown standard error of sample averages. 
 
****A rule to determine degrees of freedom associated with standard errors is to subtract 
from the sample size, n, the number of parameters being estimated (df = n – no. 
parameter estimated).  In tests about one mean, SE is the only parameter estimated (only 
one mean in the model), so d.f. = n –1. 
 
For the turkey example, the producer decided to weigh 20 individuals randomly 
obtained from the stock.  From this sample, we calculate: 
 

Sample average, ȳ  =  22.85:  
n

 yi

n

1 = i
∑

 

Sample variance, s2 = 4.45: 
1 - n

)y - y( 2
i

n

1 = i
∑

 

Standard error, SE (Y ) = SQRT (4.45/20) =  0.47:
n
s2

.   

 
We establish a rejection criterion (α level) and associated critical value: 
 
1- The traditional way is to determine a critical value for the test, given the df and 

chosen α-level (say α= 0.05).  From a t-table, we find the critical t-value.  For df = 
20-1 = 19 and α= 0.05, the critical values are ± 2.093, for a 2-tailed test. 

 

In this example, 558.4
47.0

0.2585.22
− =  -  = t , with 19 df.   

 
Compare the critical value of the test statistic to the observed value of the test statistic:  
tobs < tcrit, (- 4.558 < - 2.093), so reject the null hypothesis for the alternative at α = 
0.05.   
 
2- With computers it is now easy to determine the exact probability associated with the 

t-ratio calculated under the assumption that the null hypothesis is correct.   For t19 = -
4.558, the exact P = 0.0002. 
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(Interpretation: we expect a t-ratio this or more extreme only 2 times in 10,000 if 
the null hypothesis is correct). 
 

Results:  the null hypothesis that the turkeys weigh on average 25 lbs is unlikely to be 
true.  They can still grow for a while….   
 
Hypothesis tests are useful to guess whether a population parameter is different from a 
specified value, but they do not allow precise estimation of population parameters.  In 
this example, the test does not tell us how much the actual average weight differs from 
the targeted weight.  Confidence intervals can do this. 
 
A confidence interval for the mean 
 
Confidence intervals provide answers to the general question: 
 
What are plausible values for the (population) parameter of interest? 
In this example, What are the plausible values for the mean weight of the turkeys?  
 

  
The general formula to transform a sample mean into a t-ratio is: 
 

t-ratio = ( )YSE
Y μ−  

 
We know that most of the sample averages calculated from sampling data will fall 

near the true value of the population mean (i.e. μ). 
 
Similarly, most t-ratio obtained from sampling data will fall near 0.  

Specifically, such t-ratios would conform to a Student’s t-distribution and fall (1 - α) 100 
% of the time within some chosen critical values denoted ± t df (1- α/2). 

 
<< FIG Sleuth p. 35>> 
 

In our example, the critical values which would include 95% of the most likely t-ratios 
with 19 d.f. and α= 0.05 are –2.093 and 2.093.   
 
Thus 95 % of the time that a sample is drawn from our study population, we expect the 
resulting “incompletely specified” t-ratios to fall within those critical values: 
 

  -2.093 ≤ 
47.0

85.22 μ−
≤ 2.093 

 
We can thus solve this equation to find a confidence interval for μ 
 
  22.85 – 2.093 x 0.47 ≤ μ ≤ 22.85 + 2.093 x 0.47 
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   21.86≤ μ ≤ 23.84 
 
So the formula for a 100 (1 - α) % CI for the mean is: 
 
Y - tdf (1-α/2) SE (Y )≤ μ ≤ Y + tdf (1-α/2) SE (Y ) 
 
or 
 
Y ± t df (1-α/2) SE (Y ) 
 
 
<<OUTPUT FROM JMP>> 
 
A confidence interval defines the interval that encompasses μ with a 100 (1 - α) % 
confidence.  The lower bound for μ is called the lower confidence limit, while the upper 
bound is called the upper confidence limit.   
 
For a 95 % confidence interval, the critical value [t df (1-α/2) ] is close to 2 when sample 
size gets over 20 (for an infinite n, it is 1.96, as in the z-distribution).  As a rough guess, 
we therefore expect a confidence interval to extend ± 2 SE on each side of Y . 
 
The appropriate way to interpret confidence intervals is: 
 
If all possible samples of size n were drawn from a population and a 95 % confidence 
interval was calculated for each sample, 95% of those intervals would contain the true 
population mean (μ). 
 
Hypothesis test and confidence intervals are therefore closely related.  For a specified 
level of confidence (α), a confidence interval specifies plausible values for μ.  If those 
values do not overlap with the value specified by the null hypothesis, it is safe to reject 
the null hypothesis.   
 
Paired-Sample Hypotheses 
 
 Context:  Data from one sample are related to data from another sample (i.e. we 

have paired observations not independent from each other).  Each pair comprises 
the same individual tested twice, or two individuals expected to be similar for 
genetic or environmental reasons.  The statistical model for analysis must take 
into account such non-independence. 

 
 Approach:  Determine if the average of the difference between paired 

observations differs from some value (often 0).  Formally, test the null hypothesis 
that the population mean difference between pairs is equal to 0 (or some other 
value) with a paired t-test. 
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 Example:  Is the concentration of a plant phytochemical different between the 
upper and lower part of the root? 

 
Measure chemical concentration in the upper and lower part of the root in 10 plants. 
 
Reduce paired observations to a single set of differences for subsequent analysis.  The 
model reduces to a 1-sample t-test, comparing the sample of differences to the 
hypothesized value. 
 
LOWER UPPER DIF  (= UP – LOW) 
10 12 2 
11 13 2 
10 11 1 
7 10 3 
12 12 0 
7 9 2 
11 14 3 
8 12 4 
8 10 2 
8 8 0 
Define the mean difference between pairs, μd : The population parameter to estimate.  
State the two-tailed null hypothesis as: 
 
 Ho: μd = 0 
 Ha: μd ≠ 0 
 

Estimate μd with d .  Calculate the t-statistic as: t =  ( )dSE
d 0−  

 
The only difference between a 1-sample t-test and a paired t-test is that n in the paired 
case is the number of differences rather than the total number of observations.   
 
With n =10, df = 10 – 1 = 9 
 
d =1.9 ng,    s2 = 1.65 ng2,     s = 1.29 ng,     SE( d ) = 0.407 
 
tobs = 1.9/0.407 = 4.67. 
 
Critical value at α = 0.05:  t 9, 0.975 = 2.26.  Since tobs (4.67) > tcrit (2.26), reject the null 
hypothesis for the alternative. 
 
The exact two-tailed P-value for this t-statistic is P = 0.0012. 
 
The formula for a 100 (1- α) % confidence interval for the mean difference is: 

d ± t df (1-α/2) SE ( d ) 
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For α = 0.05 (i.e. a 95 % CI): 
 

1.9 ± (2.26)(0.407) = 1.9 ± 0.92 = (0.98, 2.82) 
 
This CI excludes the value stated by the null hypothesis (i.e. 0).  Thus a null hypothesis 
test would be rejected at the stated α = 0.05. 
 

Results:  The concentration of the plant phytochemical differed between the upper 
and lower part of the root (two-sided p-value =0.0012, paired t-test).  The 95 % CI 
for the estimated mean difference ( d =1.9 ng, SE = 0.407) between the 
concentration in the top and lower part is from 0.98 to 2.82. 
 

Two-sample Hypotheses 
 

Context:  Data collected from two independent samples, perhaps using a 
completely randomized design for 2 groups.   
 
Approach: Determine if population means differ from each other (or from some 
other value).  Formally, test the null hypothesis that the population means are the 
same using a 2-sample t-test. 
 
Example:  Compare the heights or two groups of plants that were treated with 
water only (n1 =10) of with a fertilizer (n2 = 8).   
 

State null and alternate hypotheses as: 
 
 Ho:  μ1 = μ2 

 Ha: μ1 ≠ μ2 
 
Or equivalently 
 
 Ho:  μ1 - μ2 = 0 
 Ha:  μ1 - μ2 ≠ 0 
 
The value specified in the null hypothesis is usually 0 but can be specified to be any 
ecologically meaningful difference. 
 
Test statistic for comparing means from two independent samples: 
 

t = 
( )

( )YYSE
YY o

21

21

−
−− μ

 

 
SE ( YY 21

−  ) is the pooled standard error for the difference between averages from the 
two independent samples.   
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That standard error is: 
 

SE ( YY 21
−  ) = ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

21

2

2

2

1

nn
σσ  

 
If we assume the 2 populations have the same variance (an assumption of the test), we 
obtain 
 

SE ( YY 21
−  ) =  ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

nn 21

11σ  

 
To estimate the population standard deviation, we use a weighted average of the sample 
variances (i.e. sp below).  A weighted average is used because precision of the sample 
variance depends on sample size: a weighted average is more precise than a simple 
average to estimate σ. 
 
So sp , the pooled estimate of standard deviation is: 
 

sp = 
)221(

)12()11( 2

2

2

1

−+

−+−

nn
nn ss

    d.f = n1 +n2 -2 

 
 
Finally, we substitute sp for σ, which yields: 
 

SE ( YY 21
−  ) =  sp ⎟

⎠
⎞

⎜
⎝
⎛ +

2
1

1
1

nn
 d.f = n1 +n2 - 2 

With this estimate of SE, we can calculate the t statistics for comparing means from 2 
independent samples. 
 

Example:  Compare heights of 2 groups of plants which received water (n1 = 10) 
or a fertilizer (n2 = 8). 
 

State the 2-tailed null hypothesis: 
 
Ho:  μ1 = μ2 

 Ha: μ1 ≠ μ2 
 
Calculate  Y 1

= 51.91 s2

1
= 11.36 n =10 

  Y 2
= 56.55 s2

2
 = 9.88 n = 8 
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sp = ( )
2810

)88.97(36.119
−+

+ XX = 10.71 cm2 

 

SE ( YY 21
−  ) = 10.71 ⎟

⎠
⎞

⎜
⎝
⎛ +

8
1

10
1 = 1.55 cm 

 
The appropriate t-statistic: 
 

t = 
( )

( )YYSE
YY o

21

21

−
−− μ

= 
55.1

0)55.5691.51( −− =   
55.1
64.4− =  - 2.99 

 
If we set α = 0.05, the critical value for this test, with 10 + 8 – 2 =16 df is - 2.12 
 
Because tobs (- 2.99) < tcrit (- 2.12), reject the null hypothesis for the alternative. 
 
The exact P-value for t16 = 2.99 is P = 0.0087 
 
A two-tailed test is used when the difference between means could go either way.  
Sometimes we are only interested in a directional test, i.e in a one-tailed hypothesis.  For 
example, there are situations where we know that the population parameter can only be 
greater (or smaller) than the value specified by the null hypothesis. 
 
For a one-tailed test, the test statistics is the same; the alternative hypothesis is stated 
differently, and the p-value is exactly ½ of that for a 2 tailed-test. 
 
For the fertilizer case, if we have good a priori reasons to believe that the plants that 
received fertilizer can only grow taller than the ones that received water: 
 

 Ho:  μ1 = μ2 

  Ha: μ1 < μ2 

 
Or equivalently: 
 
  Ho:  μ1 - μ2 = 0 
  Ha:  μ1 - μ2 < 0 
   
For α = 0.05, tcrit = -1.746.  This value is smaller than for an equivalent 2-tailed test, 
because now we consider as extreme the 5 % of t-ratios that are smaller than tcrit.  For the 
2-tailed test, we considered the 2.5 % of the t-ratios that fell either to the left or right of 
the critical value. 
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Because tobs = - 2.99 is smaller than the one-tailed critical value (- 1.746), reject the null 
hypothesis as being correct. 
 
The exact 1-tailed p-value for t16 = - 2.99 is P = 0.0043 (exactly ½ of the p-value for the 
2-tailed test). 
 
To get a better idea of the difference between population means, we derive a confidence 
interval: 
 

YY 21
− ± t df (1-α/2) SE ( YY 21

− ) 
 
For the plant height example, 
 
df = 16 

YY 21
− = 51.91-56.55=- 4.64 

SE ( YY 21
−  ) = 1.55 cm 

t df (1-α/2) = 2.12 
 
The 95% CI for the difference μ1 - μ2 is: 
 
51.9 –56.55 ± (2.12)(1.550) = - 4.64 ± 3.286 = -7.926, -1.354. 
 
Interpretation for such 95% CI is: 
 
If all possible pairs of random samples were taken from both populations of size n1 and 
n2, and a new CI was generated each time, then 95 % of those CI would capture the true 
value of μ1 - μ2. 
 
Note that zero is not included in the 95% CI for the difference between group means.  
This implies that the null hypothesis μ1 - μ2 = 0 would have been rejected at α = 0.5. 
 
Results:  Addition of the fertilizer caused an increase in plant growth compared to plants 
receiving water (t16 = 2.99, P = 0.0087).  The 95% CI for the estimated mean difference 
in growth for plants receiving water ( y = 51.91 cm) or the fertilizer ( y = 56.55 cm) was 
1.35 to 7.93.  
 
 
 
***Note:  the 95% CI for a 1-tailed test is calculated as follow: 
 

YY 21
− ± t df (1-α) SE ( YY 21

− ) 
 


