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RNR / ENTO 613.  Assumptions for Two-sample t-tools 
 
The assumptions on which t-tests are based are never met exactly.  This is not necessarily 
a problem because conclusions obtained from t-tests are often valid even if the 
assumptions are not strictly met.  Alternatives exist if violation of assumptions occurs.  
Data transformation is one such alternative. 
 
Statistical models for 2 independent samples are based on 4 assumptions, in decreasing 
order of importance: 
 

1. Random sampling 
2 Independence of observations within and between groups 
3 Homogeneity of variance (homoscedasticity) 
4 Normality 
 

Departure from these assumptions may lead to misleading inferences. 
 
Robustness of t-tools 
 
 Robustness:  A statistical procedure is robust to departures from a particular 

assumption if it is valid even when the assumptions are not met exactly.  Valid 
means that the confidence interval and p-values arising from the test remain equal 
to the stated rate. 

 
1. Random sampling 
 
Statistical inferences and CI estimation can be biased if subjects are not selected 
randomly from populations. 
 
Random sampling of units is done to ensure that the sample is representative of the 
population.  Inferences about populations are not possible without random sampling of 
subjects (as opposed to self-selected subjects or arbitrary selection). 
 
Example: You may underestimate how fast rabbits can run if you only study sick 
individuals that are easy to observe! 
 
There are no statistical procedures that are robust to violations of the random sampling 
assumption. 
 
2. Sample independence 
 
Lack of independence occurs in a group when the value of an observation (say above the 
mean) allows to guess the value of another observation (also above the mean). 
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Lack of independence occurs between groups when the value of an observation in one 
group allows prediction of the value of an observation in the other group (e.g. 
Schizophrenia in twins; paired observations).  
 
Lack of independence commonly takes 2 forms: 
 
 Cluster effects: data are collected in subgroups, where individuals in the 

subgroups are more similar in their response to a treatment than other individuals 
in the group.  Ex: subgroups arise within samples as a result of common 
environment or genetic effects (litters). 

 
 Serial effects: measurements taken closer in time or space tend to be more similar 

than measurements taken farther apart in time or space.  These are respectively 
designated as serial and spatial autocorrelation. 

 
<< Fig. 15.4 in Sleuth>> 
 
Lack of independence leads to incorrect estimation of the standard error of the difference 
between group means, and to incorrect estimates of the t-statistic: t-tools are not robust to 
violations of the independence assumption. 
 
3. Homogeneity of variance 
 
T-tools are not robust when the SD of 2 populations are unequal and sample sizes are 
different.  Then the pooled estimate of standard deviation does not estimate any real 
population parameter, and SE ( YY 12

− ) is not appropriate. 
 
When sample sizes are approximately equal, the t-tools are robust to violations of equal 
variance assumptions. 
 
<<Fig. 3.5 in Sleuth>> 
 
4. Normality 
 
In theory, the larger the sample size, the more robust are t-tools to violations in the 
normality assumption (central limit theorem).  In practice it is hard to tell how large is 
large…Two general rules are useful: 
 
a) if 2 sample distributions have approximately equal variance and shape: 
 

i) if sample sizes are approximately equal, robustness of t-tools is affected 
moderately by long-tailed distributions. 

 
<<Fig. 3.4 in Sleuth>> 

 



 28

ii) If sample sizes are unequal, robustness is affected moderately by long-tailed 
distributions and substantially by skewness. 

 
b) if skewness of 2 distributions differs considerably (e.g. in opposite direction), t-tools 

can be misleading, especially for moderate sample sizes. 
 
Resistance of t-tools 
 
 Resistant:  A statistical procedure is resistant if its conclusions are not sensitive 

to a change in a small part of the data.  Specifically, a resistant statistical 
procedure is not affected much by outliers. 

 
Practical strategies for analysis of Two-Sample Data 
 
To meet the assumptions underlying the use of two-sample t-tool: 
 
1. Consider Serial and Cluster effects 
 
To detect: Plot data to detect presence of subgroups, or non-random patterns of 

measurements as a function of time or distance.  Review the ways in which 
data were gathered. 

 
 <<Fig. 15.4 from Sleuth>> 
 
 
To remedy:  

a) Choose a good sampling design to keep track of possible lack of 
independence.  

 
b) If observations are not independent, statistical models must reflect such 

lack of independence: 
 

For example, cluster effects within samples could be addressed with a 
nested ANOVA or randomized block experiment.   

 
Lack of independence between groups could be addressed with paired 

t-test or repeated measure designs. 
 
Tools are available to analyze autocorrelated data (Chap 15 in Sleuth).  

 
2. Evaluate Homogeneity of variance and Normality 
 
To Detect:  Graphically with side-by side box plots. 
 
To Remedy:  Try a data transformation and reassess;  if not successful, use techniques 

that are more resistant and robust, such as the non-parametric rank-sum 
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procedure (also called Wilcoxon or Mann-Whitney tests), permutation / 
randomization tests (programs are available to do this:  e.g. Manly’s 
program), or the Welch t-test for comparing two normal populations with 
unequal variance. 

 
There are tests available for assessing homogeneity of variance (e.g. Levene’s test) and 
normality (e.g. Shapiro-Wilk W-test).  Many of these tests are sensitive to small 
departure from normality or homogeneity of variance that would have little consequence 
on robustness of t-tools.  For that reason they are not recommended.  
 
<<Fig. 3.2 in Sleuth>> 
 
 
3. Assess Effect of Outliers 
 
1. Perform statistical analysis both with and without the outliers. 
2. If statistical conclusion is not qualitatively different (i.e. does not change much), 

leave the outliers in the data set. 
3. If statistical conclusion does change, then: 

a) Investigate outliers for possible recording error. 
b) If it is found that outliers are from another population than the experimental ones, 

then remove them. 
c) Otherwise, use a resistant tool (e.g. non-parametric rank-sum test) or report results 

from both analyses. 
 
<< Fig. 3.6 in Sleuth>> 
 
Data transformations 
 
A transformation of original data can improve how well the assumptions are met.  Often 
the main goal of a transformation is to establish a scale where the 2 groups have the same 
spread. 
 
Log transformation 
 
The logarithmic (log) transformation is very useful for positive data.  The common 
logarithm, defined as log10 (10x) = x can be used.  Commonly the natural log is used (e = 
2.72828…):  ln (e) = 1; ln(1) = 0; ln (ex) = x.  
 
The log transformation spreads out small values and draws in larger ones.  It is indicated 
when the ratio of largest to smallest measurement in a group is > 10, or when groups are 
skewed to the right and the mean is positively correlated to the variance.   
 
<<Fig. 3.7 Sleuth>> 
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The logarithmic transformation expresses a relation that is multiplicative on the scale of 
measurement as an additive relation on a logarithmic scale.  For example, the Richter 
scale for measuring magnitude of earthquake, and pH values that measure acidity, are 
logarithms.   
 
<<Fig on Growth process>> 
 
Interpretation after Log transformation 
 
For randomized Experiments. 
 
In a randomized experiment with an additive treatment effect, we assume that every 
subject exposed to a treatment show the same response denoted δ.  We thus have Y* = Y 
+ δ for subjects exposed to the treatment and Y* = Y for subjects in the control group. 
 
If a treatment effect is multiplicative, a log transformation makes that treatment effect 
additive on a log scale: 
 
A multiplicative treatment (eδ) applied to the treatment group yields Y* = Y eδ.  For the 
control group, δ = 0 and thus we obtain:   Y* = Y. 
 
On a log scale, the same treatment produces log Y* = log (Y) + δ.  For the control group, 
δ = 0 and we obtain log Y*= log (Y). 
 
To test whether there is a treatment effect on the log scale (i.e. δ ≠ 0), one performs the 
usual t-test, where the null hypothesis is: 
 
 Ho: mean [log(Y2)] – mean [log(Y1)] = 0 = δ 
 
To describe the treatment effect on the original scale, we back transform the estimate of δ 
and the endpoint of its confidence interval. 
 
 Interpretation:  A subjects’ response to treatment 2 is exp( zz 12 − ) times as large 

(i.e. eδ) as the subjects response for treatment 1 (where zi  =average log(Yi)). 
 
For the Cloud Seeding example, the difference between the treatment and control group 
(log-transformed observations) was 1.14 (SE = 0.449), with a 95% CI = 0.241, 2.047.  
Back-transformation yields e 1.14 = 3.138, and the 95% CI is e 0.241 = 1.27 to e 2.047 = 7.74.  
 
 Interpretation:  Volume of rainfall was 3.14 times larger in seeded than unseeded 

clouds (95% CI: 1.27 to 7.74) 
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For Observational Studies. 
 
Inferences about population means still refer to multiplicative changes (see Sleuth p. 70-
71 for logic behind this).   
 
Interpretation of observational studies is: 
 
The median for population 2 is estimated to be exp ( ZZ 12

− ) times as large as the 
median for population 1. 
 
For the Sex Discrimination example, the average difference between the log transformed 
male and female salaries is 0.147.  Because e 0.147 = 1.16, it is estimated that the median 
salary for males is 1.16 times as large (16 % greater) than the median salary for females.  
The 95% CI on the log scale is 0.100 to 0.194.  Because e 0.100 = 1.11 and e 0.194 = 1.21, 
the median salary for males is estimated with 95% confidence to be between 11% and 
21% greater than the median salary for females. 
 
Other transformations for positive measurements 
 
Other useful transformations can be applied to improve assumptions underlying the use 
of t-tools.  Tests based on these transformations are generally approximate on the original 
scale with a CI approach.  This is because the back-transformed averages used to 
calculate a t-ratio do not exactly correspond to the original untransformed averages. 
 
This does not represent a problem because:  
 
a) The difference between the transformed and back-transformed averages is usually 

small. 
b) If you were to repeat the same experiment again, it would be unlikely that you would 

obtain exactly the same estimate for the difference between the 2 population means 
anyway (but each CI computed from the 2 experiments would have the same 
probability of capturing the true difference between the population means). 

 
So in practice, to get an idea of the difference between group means when 
transformations other than the log are used, we look at each back transformed means and 
their associated back transformed confidence limits (not at the back transformed 
difference between means). 
 

1) Use transformed data to calculate an average and associated  95% CI 
2) Back transform average and limits of the 95% CI  
 

In the end you get 2 back transformed averages and their associated back transformed CI.  
These can be used to assess the difference between groups. 
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Some common problems and useful transformations. 
 
Problem Severity / Nature Transformation 
Positive skew 
(tail to the right) 

Severe (waiting times, times to failure) 
Moderate 
Slight (count data) 

1/y 
log y 
y ½, y 1/3 

   
Negative skew 
(tail to the left) 

Severe 
Moderate 

y 2
y 3 

   
Unequal 
variance 

Standard deviation ∝mean 
Standard deviation ∝ square of the mean 
Standard deviation ∝ root of the mean 

log y 
1/y 
y ½, y 1/3 

   
Proportions Almost all cases log[y/1-y] 

arcsin(√y) 
   
Large range of 
y’s within 
groups 

 Log y 

a) For log transformation, use log (X + 1) if data include zeros 
b) For SQRT transformation, use SQRT (X + 0.5) if data include zeros 

 
See Sokal and Rohlf (Biometry) or other textbooks for more discussions on 
transformations.  Ramsey and Schafer suggest trial and error for choosing an appropriate 
transformation. 


