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Practical and Statistical Significance

Statistical significance (P-value) indicates the extent to which the null hypothesis is contradicted by the data.

Practical (or biological or whatever) significance is different, and describes the practical importance of the
effect in question.  

A study may suggest a statistically significant increase in plant growth of 1% due to a treatment, but this
increase may not justify the expense of the treatment.  Hence, the finding is statistically significant but not
practically significant.  

Statistical significance is really only a matter of sample size.  Even the slightest difference in population
means will be found to be statistically significant given enough samples.  

In contrast, even if there truly is a practically significant difference between population means, small sample
sizes might fail to indicate the existence of a statistically significant difference.  

Three points to consider:

1.  P-values are sample size dependent.  
2.  A result with a P = 0.08 can be more important scientifically than one with P = 0.001.  
3.  Hypothesis tests rarely convey the full meaning of the results; they must be accompanied by
confidence intervals to indicate the range of likely effects and to assess practical significance.  

Comparing Several Samples

Introduction

Issues and tools for analysis of >2 independent samples are similar to comparing 2 samples.  More
questions are possible.  

Initial question asked in this context is whether means of all samples are equal, i.e., Ho: :1 = :2 = :3 = :4.  

Analysis of Variance (ANOVA) is an important tool for analysis of >2 samples and is a straightforward extension of
the 2-sample t-test.  

Can use ANOVA to perform each of the t-tests studied; i.e., an ANOVA with 1 or 2 groups is exactly the
same as a t-test.  

We will develop ANOVA as a type of General Linear Model and move towards a more general approach to
data analysis.  

Comparing Any Two of Several Means

When subjects are divided into distinct experimental or observational categories, the study is a one-way
classification problem.  

A typical analysis in this context involves 

1. graphical exploration
2. consider transformations
3. initial screening to evaluate differences between all groups
4. inferential techniques to address questions of interest

Besides the question of equal group means (Ho: :1 = :2 = :3 = :4), we can assess pairwise differences
between means, such as:
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“Does the mean of group 1 differ from the mean of group 3?” (i.e., Ho: :3 = :1 or Ho: :3 – :1 = 0).  

When the number of comparisons is large, we must consider the consequences of simultaneous inferences. 

Ideal Model for Several-sample Comparisons

An Extension of the normal model for 2-sample comparisons:

1. populations have normal distributions, 
2. population standard deviations (or variances) are all equal, 
3. observations within each sample are independent,
4. observations in any one sample are independent of those in other samples. 

Notation

Population mean: : with a subscript indicating its group (e.g., :2)
Standard deviation (assumed “common” to all pop’ns): F
No. treatments, populations, or groups sampled: I (e.g., I = 4)
No. observations in the ith sample: ni (e.g., n2 = 5)
Total no. observations from all groups: n  (= n1 + n2 + AAA + nI)

We estimate I + 1 parameters in the ideal model; one for each of the I group means and one for the pooled
standard deviation F.  

Pooled Estimate of the Standard Deviation

The mean for the ith population, :i, is estimated with the average of the ith sample.  

Variance (F2) is estimated separately for each of the I samples (si
2).  We pool these variance estimates to

get an average weighted by their degrees of freedom (sp
2):  

If variances of all groups can be assumed equal, F2 is best estimated with sp
2, the pooled estimate from all

groups.  

t-Tests and Confidence Intervals for Mean Differences

Use the pooled estimate of variance to calculate the standard error of the difference between groups which
is used to calculate t-statistics to compare means between any 2 groups and confidence intervals for the
difference between any 2 groups.  

Example:  

Mice-diets (Ch. 5) with 6 groups in a one-way classification. 

Compare means from group 3 and group 2 (:3 – :2).

Estimate SE of y63 – y62: 

, where sp is the pooled estimated standard deviation from all 6s SE y y s
n ny y p3 2 3 2

3 2

1 1
    ( )

groups, with (n – I) df.  
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Theory and computations for confidence intervals and hypothesis tests are identical the two-independent
sample problem.  

t = (y63 – y62) / SE(y63 – y62)

95% CI = (y63 – y62) ± tdf(1 - "/2) SE(y63 – y62)

ANOVA:  Terminology and Bookkeeping

The term “variance” in ANOVA should not be misleading—these are question about means.  

ANOVA approach assess differences in means by comparing the amount of variability in the data explained
by different sources.  

ANOVA models reflect closely the way in which data were collected (i.e., the sampling or experimental
design).  

Illustration:  experiment assessing the effects of four different feeds on the body mass of pigs.  

Randomly allocate 4-5 pigs to each treatment group and raise them on this type of feed.  The resulting data
look like this:  

Feed 1 Feed 2 Feed 3 Feed 4

60.8 68.7 102.6 87.9

57.0 67.7 102.1 84.2

65.0 74.0 100.2 83.1

58.6 66.3 96.5 85.7

61.7 69.8 90.3

The following terms assume a manipulative experiment, though they usually apply to observational studies
too.  

Experimental unit — the smallest independent unit of an experiment to which a treatment can be
(randomly) assigned; here, each pig.  

Experimental design —the way in which treatments are assigned to experimental units.  The example is a
Completely Randomized Design (CRD).  

Treatment — manipulations to which experimental units are subjected; here, the treatment is feed-type.  An
important type of treatment is a control.  

Factor — a group of related treatments examined in an experiment; this example is for a single-factor (one-
way) classification (design), as feed-type is the only factor examined.  

Levels — the number of different treatments for a particular factor; here, there are four levels of feed-type. 

Replicate — smallest set of experimental units that receive the complete treatment set. 

Experimental error — differences in responses from experimental units receiving the same treatment.  

Response — variable measured to assess the effects of experimental treatments; here, the body mass of
pigs studied.  
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For a one-way (single-factor) ANOVA, track the response for every experimental unit using two subscripts,
yij: 

• the first subscript, i, identifies the treatment group
• the second subscript, j, identifies each experimental unit (replicate) within a treatment. 

For example, y23 identifies the response for the 3rd subject in the 2nd treatment group, where y23 = 74.0.  

The average for each treatment i is identified as y6I (or y6I.).

The average for all observations from all treatments is the grand mean and is identified as  y6 or y6.. and is
calculated as:

Sample sizes for each treatment I are identified as nI; sample size for the entire experiment is n. 

Partitioning Sum of Squares

Total Sums of Squares (SS) estimates the total amount of variation in a data set and can be partitioned
into component “sources.”  

We then examine how these different sources interrelate. 

In the simplest case of a single sample, SS = '(yi ! y6)2.  

• Total SS represents variability among all data:   ( )..y yij
j

n

i

I j
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i.e., the sum of the squared differences between every observation and the grand mean.  

In a one-way classification, Total SS is partitioned two sources: 

• variability due to treatments (Treatment SS) 
• variability due to error (Residual or Error SS).  

A residual is an observed value minus its estimated mean.

No matter how you partition them, Total SS for a given data set are always the same.  

• Total df  is the sum of all nI  minus 1, or n – 1.  

• Treatment SS (or among-groups SS) is the variability among averages from
different treatments:  

• Treatment df (or among-group df) is the number of treatment groups minus 1, or I ! 1. 

• Residual SS (or error SS or within-group SS) is variability among experimental
units receiving the same treatment:  

• Residual df (or error df or within-group df) is:  n n Ii
i

I

  

 1

1

SS and their df  are additive: 

Total SS = Treatment SS + Residual SS
Total df = Treatment df + Residual df

After calculating Total SS and Treatment SS, Residual SS can be obtained by subtraction: 

n y yi i
i
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Residual SS = Total SS – Treatment SS
Residual df = Total df – Treatment df

The deviation between each observation and the grand mean is the sum of:  

1.  the deviation of that observation from its group average 
2.  the deviation of that observation’s group average from the grand mean: 

(yij ! y6..) = (yij  ! y6I.) + (y6I. ! y6..)

In the 2-group case (t-test), if we assumed F2
1 = F2

2, we estimated F2 with the pooled sample variance, sp
2:  

This is equivalent to  (SS1 + SS2) / (df1 + df2), which is the Residual SS divided by the Residual df.  

Assume variances from all groups are equal (F2
1 = F2

2 = F2
3 = F2

4), and estimate F2 with sp
2 by dividing

Residual SS by Residual df, which is an estimate of error (residual) variance: 

residual or error SS = ( )y yij i
j

n

i

I j



 2

11

residual or error df =  ni
i

I



 1

1

The estimate of variance (Residual SS / Residual df) is called the Residual Mean Square (or Mean Square
Error, MSE).   

Dividing any SS by its respective df estimates a component of variance or its squared deviation from the
mean, often called simply a Mean Square. 

For example, to estimate variance attributable to treatment, divide Treatment SS by Treatment df, which is
the Treatment Mean Square. 
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One-way Analysis of Variance F-test

Initial question: Are there differences between any of the group means? Answered with ANOVA F-test.  

Significance tests in ANOVA (F-tests) function by comparing ratios of different variance components (i.e.,
mean squares).  

F-Distributions

If all means are equal, the F-statistic has a sampling distribution of an F-distribution.  

F depends on two parameters, the numerator degrees of freedom and the denominator degrees of freedom. 

When reporting an F-statistic, report both numerator and denominator df’s.  For example, F2,21 = 4.54.  

For each possible pair of df’s, there is a different  F-distribution.  

• F values ranging from 0.5 to 3.0 typically do not indicate strong evidence again the null hypothesis of equal
means.  

• F values >4.0 are strong evidence again the null.  

F-Tests

To generate an F test statistic for a treatment
effect, calculate the ratio of
Treatment MS/Residual MS. 

For our example:

Ho:  :1 = :2 = :3 = :4

Ha: mean body mass of at least one
treatment differs from the others. 

Determine relevant averages, SS, df, and MS:  

Feed 1 Feed 2 Feed 3 Feed 4

60.8 68.7 102.6 87.9

57.0 67.7 102.1 84.2

65.0 74.0 100.2 83.1

58.6 66.3 96.5 85.7

61.7 69.8 90.3

y6i 60.62 69.30 100.35 86.24 y6.. = 78.01

nI 5 5 4 5 n = 19

Res SSI 37.57 34.26 22.97 33.55 Res SS = 128.35
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To calculate each MS, consider what each component is estimating:  

• Residual SS estimates variation within experimental units treated alike

• Treatment SS estimates the variation among each treatment average from the average of all
observations. 

Dividing each SS by its df estimates the average squared deviation (variance) for each component.  

Residual SS for Treatment 1 (call it Res SS1), where y61 = 60.62: 

3[(60.8 – 60.62)2 + (57.0 – 60.62)2 + (65.0 – 60.62)2 + (58.6 – 60.62)2 + (61.7 – 60.62)2] = 37.57

Res SS = 37.57 + 34.26 + 22.97 + 33.55 = 128.35

Total SS: subtract every observation from the grand mean, square the result, then sum.  

All relevant SS, df, and MS follow:

Total SS = 4354.70
Total df = 19 ! 1 = 18

Treatment SS = 4226.35
Treatment df = 4 ! 1 = 3
Treatment MS = Trt SS/Trt df = 4226.35/3 = 1408.78

Residual SS = 4354.70 ! 4226.35 = 128.35
Residual df = N ! I = 19 ! 4 = 15
Residual MS = Res SS/Res df = 128.35/15 = 8.56

Calculate the F-statistic for the feeding treatment as:

F 3,15 = Trt MS/Res MS = 1408.78/8.56 = 164.64, P < 0.0001. 

Bookkeeping is simplified by using an ANOVA table, in which calculations used in the F-test are organized
and displayed.  

Analysis of Variance

Source (of Variation) df
Sum of 
Squares

Mean
Square F Ratio Prob > F

   Treatment (Model)   3 4226.35 1408.78 164.64 <0.0001

   Error (Residual) 15   128.35       8.56

   Total 18 4354.70

Extra-Sum-of-Squares Principle

An alternate approach to the ANOVA F-test (that yields identical results) is based on the extra-sum-of-
squares principle.  

Consider the null hypothesis of equal group/treatment means.

Assume a one-way classification with I = 7 groups.  
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The initial hypothesis is:  Ho: :1 = :2 = ... = :7 and the alternative is that at least one of the means differs
from the others.  

Full and Reduced Models

ANOVA are formulated by comparing two models for the mean responses.  

A full model is a general model that functions as a starting point; a reduced model is a special case (always
simpler) of the full model obtained by imposing the restriction of the null hypothesis.  

For comparing equality of all means, the full model includes a separate mean for each group.  

The reduced model, obtained from the full model by supposing that the null hypothesis of equal means is
true, in this case specifies a single mean for all populations:  

Group: 1 2 3 4 5 6 7

Full (separate-means) model: :1 :2 :3 :4 :5 :6 :7

Reduced (equal-means) model: : : : : : : :

Specifying full and reduced models provides the framework for the extra-sum-of-squares F-test.  

In a test of equality of group means, the full model is called the “separate-means” model and the reduced
model is the “equal-means” model.  

Fitting the Models

ANOVA functions by estimating parameters in both the full and reduced models and “asking” whether
variability of responses about the estimated means is comparable in the two models.  

The estimated means for each group different between models:

Group: 1 2 3 4 5 6 7

Full (separate-means) model: y61 y62 y63 y64 y65 y66 y67

Reduced (equal-means) model: y6 y6 y6 y6 y6 y6 y6

where y6 is the average of all observations, the grand mean.  

Residuals

A residual is an observed value minus its estimated mean. 

Each observation in the data set can be linked to a group mean based on the full model and a different
group mean based on the reduced model.  

Therefore, if yij is the response measured on the jth observation from the ith group, the residual from the full
model is yij – y6i  and the residual from the reduced model is yij – y6.  

If the null hypothesis is correct, the full and reduced models should be about equal in their ability to explain
the data, so the residuals should be about the same for both models.

If the null hypothesis is incorrect, the residuals from the reduced model (equal-means) will be larger than
those from the full model (separate-means). 
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A summary of the residuals for a given model is the residual sums of squares for that model, which is the
sum of the squared residuals.  

Residual sums of squares measure the variability in observations that remains unexplained by a particular
model.  

By determining the sum of the squared residuals for the full and reduced models separately, we can
compare the differences between models to assess if the difference between models is large (indicating a
poor fit) or is small enough to attribute to sampling variation.  

Extra-Sum-of-Squares F-statistic

The extra sum of squares is a single number that summarizes the difference in sizes of residuals between
full and reduced models:

Extra SS = Residual SS (reduced) – Residual SS (full)

Extra sums of squares measures the amount of unexplained variation in the reduced model that is
explained by the full model. 

To determine if there is “too much” variation left unexplained by the reduced model, compare it with the
variability left unexplained by the full model using an F-statistic:  

where Extra df are the number of parameters representing means in the full model minus the number
representing means in the reduced model, and F$ 2

full is the estimate of F2 based on the full model.  

The F-statistic, therefore, is the Extra SS per extra df scaled by the best estimate of variance.  

Large F-statistics are associated with large differences in the sizes of residuals between models, which
supplies the degree of evidence against the null hypothesis (here, equal means) in favor of the alternative
(here, unequal means).  

The test is summarized by its P-value which (again () is the probability of finding an F-statistic as large or
larger the observed F if the null hypothesis is true (i.e., means are equal).  

Feeding example

Residual SS (reduced) = 4354.70
Residual SS (full) = 128.35

Residual df (reduced) = n – 1 = 19 – 1 = 18
Residual df (full) = n – I = 19 – 4 = 15

F$ 2
full = MS Residual (full) = 8.56

Extra SS = 4354.70 – 128.35 = 4226.35
Extra df = 18 – 15 = 3

F3, 15 = (4226.35 / 3) / 8.56 = 164.58, P < 0.0001
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Fitting Full and Reduced Models with Statistical Software

Statistical packages do not automatically generate full and reduced models.  

Instead, models are fit separately, and the extra SS F statistic calculated by hand.  

Create new classification variables that reflect the structure of the full and each reduced model of interest. 

The full model classification identifies the original levels in the study and is usually the most complex model
(i.e., most parameters; often the separate-means model).  

The reduced model classification identifies each level of interest in a simpler model (here, equal-means
model).  

For the feeding example, separate-means (full) and equal-means (reduced) models are: 

Group: 1 2 3 4

Full (separate-means) model: :1 :2 :3 :4

Reduced (equal-means) model: : : : :

These separate means and equal means models are reflected by the first two classifications in the following
data table: 

Feed-type classification

Y (mass)
Full

(separate means)
Reduced

(equal means)
Reduced 

(Type 3 v. others)

60.8 1 1 1

57 1 1 1

65 1 1 1

58.6 1 1 1

61.7 1 1 1

68.7 2 1 1

67.7 2 1 1

74 2 1 1

66.3 2 1 1

69.8 2 1 1

102.6 3 1 3

102.1 3 1 3

100.2 3 1 3

96.5 3 1 3

87.9 4 1 1

84.2 4 1 1

83.1 4 1 1

85.7 4 1 1

90.3 4 1 1
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JMP’s Fit Y by X platform yields the analysis for the Separate Means (full) classification:

Oneway Analysis of Mass By Feed Grp

Summary of Fit
  
Rsquare 0.970526
Adj Rsquare 0.964631
Root Mean Square Error 2.925178
Mean of Response 78.01053
Observations (or Sum Wgts) 19

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio Prob > F
Feed Grp 3 4226.3479 1408.78 164.6415 <.0001
Error 15 128.3500 8.56
C. Total 18 4354.6979

For the Equal Means (reduced) classification:
  
Rsquare 0
Adj Rsquare 0
Root Mean Square Error 15.55402
Mean of Response 78.01053
Observations (or Sum Wgts) 19

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio Prob > F
Equal Means 0 0.0000 . . .
Error 18 4354.6979 241.928
C. Total 18 4354.6979

Extra SS F-test to compare full and reduced models: 

F = (Extra SS/Extra df) / (Residual SS (full)/Residual df (full)) =
(Extra SS/Extra df) / Residual MS (full)

Extra SS = Residual SS (reduced) – Residual SS (full) =
4354.70 – 128.35 =  4226.35

Extra df = Residual df (reduced) – Residual df (full) = 18–15 =
3 

Residual MS (full) = MSE (full) = 8.56

F3,15 = (4226.35/3) / 8.56 = 1408.78 / 8.56 = 164.58, p < 0.0001

Which provides convincing evidence that the mean mass of
pigs raised on at least one feed differs from those raised on
other feeds.  

F statistic identifies df in both the numerator and denominator. 

Here, the numerator has 3 df (no. parameters in full model –
no. parameters in reduced model) and the denominator has 15
df from error MS (or residual), taken from the full model.  
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In the case of a one-way classification, comparing a full model to a reduced models of equal means is
identical to testing for a treatment effect. 

More Applications of the Extra SS F-test

Extra SS advantage becomes evident when more specific hypothesis tests are fit within a particular
classification (i.e., models are nested). 

E.g., say we’re interested in whether the mean mass of pigs raised on feed 3 was the same as that pigs
raised on the other 3 feeds.  The appropriate set of full/reduced models is (to explain that portion of the
Treatment SS explained by feed-type vs. others) is: 

Group: 1 2 3 4

Ha: Full (others-equal) model: :1 :1 :3 :1

Ho: Reduced (equal-means) model: : : : :

The remaining Treatment SS is: 

Group: 1 2 3 4

Full (others-equal) model: :1 :2 :3 :4

Reduced (equal-means) model: :1 :1 :3 :1

The appropriate classification is in the last row of the data table above.  

The output for the reduced model remains the same as before, and the output for this others-equal (full)
model is:  

Analysis of Variance

Source DF Sum of Squares Mean Square F Ratio Prob > F
Diet 1 vs 3 1 2528.5306 2528.53 23.5384 0.0001
Error 17 1826.1673 107.42
C. Total 18 4354.6979

Extra SS = Res SS (reduced) – Res SS (full) = 4354.70 – 1826.17 =  2528.53

Extra df = Residual df (reduced) – Residual df (full) = 18 - 17 = 1

Residual MS (full) = MSE(full) = 8.56

F1,15 = (2528.53/1) / 8.56 = 295.39, p < 0.0001

So there is convincing evidence that the mean mass of pigs raised on feed 3 differed from those raised on
other feeds.  

Note that the F-statistic reported in JMP is not appropriate (why?). 

Several sub-models based on the same classification (nested) are possible, ranging from least specific
(equal means), intermediate (others equal), and most specific (separate means).  Each describe a different
partitioning of the SS for treatment or group effects.  

Because all of these classifications partition the same Treatment SS, they also each contribute to a
reduction in the overall Residual SS (within-group SS or error SS). 
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We can examine how each nested model partitions the overall Treatment SS (from the separate means
model) and subsequently reduces the overall Residual SS using a detailed ANOVA table:

Analysis of Variance

Source (of Variation)
Sum of
Squares df

Mean
Square F Ratio Prob > F

Among groups (Treatment) 4226.35  3 1408.78 164.6 <0.0001

    Feed-type 3 vs others (2528.53) (1) 2528.53 295.4 <0.0001

    Among other groups (1697.82)  (2)   848.91   99.2 <0.0001

Within groups  (Residual or Error)   128.35 15       8.56

Total 4354.70 18

The “Among other groups” SS is found by subtraction.  The appropriate F-stat is formed by dividing the
“Among other groups” MS by the Error MS from the full model. 

F2,15 = (1697.82.82/2) / 8.56 = 99.46, P < 0.0001

Robustness and Model Checking for F-tests

Essentially these are simple extensions of the 2-sample case. 

1. Sample Independence—Critical, both within and across groups.  
2. Homogeneity of Variance—Critical.  
3. Outliers—Tools not resistant to severe outliers.  
4. Normality—Not critical.  Extremely long tails or skewed distributions coupled with very different sample
sizes, especially if sample sizes are small.

Diagnostics Using Residual Plots

Examining side-by-side box plots is an important first step in these analyses; they help identify 

1.  the centers
2.  the relative spreads [and need for transformations]
3.  the general shape
4.  outliers.  

Residual plots show the original observations with their group means subtracted out (yij – y6i), thereby
eliminating the visual interference of differences between means.  

The features to look for are 

1.  an increase in spread from left to right in a funnel-shape pattern (suggesting need for a log
transformation) or 
2.  serious outliers.  
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For the feed-type example, compare side-by-side quantile and residual plots:  

' RNR 613 — Means Separation after ANOVA

In the Feeding example, we rejected the null of equal means (F3,15 = 164.64. p < 0.0001) and subsequently
concludes mean body mass of pigs raised on different diets were not all equal.  

This result suggests a series of more specific questions: 

• Which treatments differed from each other?
• Which treatments were similar? 

A significant F-statistic in a one-way classification can result from many outcomes, such as (:1 … :2 … :3 …
:4) or (:1 … :2 = :3 = :4).  

The process used to separate group means depends on whether specific comparisons were planned before
the experiment or were unplanned.  

• Use multiple t-tests?

Generate t-tests for all pairwise combinations of group means (for I = 3 groups, test Ho: :1 = :2,  Ho: :2 = :3,
Ho: :1 = :3)?  

1. no. comparisons rises quickly with no. groups:  
for I = 3 there are 3 comparisons
for I = 7 there are 21 comparisons 
for I groups there are I (I ! 1)/2 comparisons

2. With multiple comparisons, Type I error rate no longer = "; the true Type I error rate (") is inflated: 
" = 1 – (1 –  ")I. 

For I = 3 and " = 0.05, the true " = 1 – (1 – 0.05)3 = 0.14.  

3. Multiple t-tests do not use the pooled estimate of variance from all groups — this can increase the
efficiency of comparisons relative to multiple t-tests. 
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• Planned Comparisons

Appropriate with multiple treatment levels and a set of companions of special interest chosen ahead of time
(i.e., before any data have been collected or before the researcher has seen the collected data). 

If comparisons involve only a few pairs of means (say :3 – :1 and :4 – :2) then using simple t-tests with the
pooled standard deviation (sp) estimated from all groups: 

Questions often involve comparisons among sets of treatment means based on relationships among
treatment groups.  

E.g., in the Feeding study, we might compare means from pigs raised on feeds 1 and 2 (meat) to those
raised on feeds 3 and 4 (soy). 

We could reclassify groups so that pigs from feeds 1 and 2 are coded as “meat” and pigs from feeds 3 and
4 as “soy” and use a 2-sample t-test.  

However, a better approach exists is to incorporate the pooled estimate of variance from all groups in the
ANOVA framework. 

This approach uses Linear Combinations of group means.  

Use the parameter ( (gamma) to represent a linear combination of group means of the form:  ( = C1 :1 + C2

:2 + ... + CI :I, where I is the number of groups and the C’s are coefficients chosen by the researcher to
measure specific features of interest.  

Estimate ( with g, where g = C1 y)1 + C2 y)2 + ... + CI y)I

Example 1:  Compare average mass of pigs raised on feeds 1 and 2 (meat) to those on feeds 3 and 4 (soy).  

Equivalent to testing: (:1 + :2) = (:3 + :4)  or (:1 + :2) – (:3 + :4) = 0.  

Relevant linear combination of averages can be specified as g = (y)1 + y)2) – (y)3 + y)4), 
where C1 = 1, C2 = 1, C3 = –1, C4 = –1.  

Coefficients +½ +½ !½ !½ would yield identical results.

When a set of coefficients sum to zero, they are a type of linear combination called orthogonal contrasts or
simply contrasts. 

Compare results from these two approaches: On the left is the t-test using reclassified group labels, on the
right is the same comparison done within ANOVA with linear contrasts.  

Note considerable difference in standard errors between approaches and the small difference in the
estimated difference between means: 
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Assuming equal variances

Estimate

Std Error

Lower 95%

Upper 95%

 -27.551

   3.070

 -34.029

 -21.073

Difference

  -8.973

t Test

  17

DF

  <.0001

Prob > |t|

UnEqual Variances

Estimate

Std Error

Lower 95%

Upper 95%

 -27.551

   3.134

 -34.140

 -20.962

Difference

  -8.792

t Test

13.9145

DF

  <.0001

Prob > |t|

t Test

Example 2: Compare mean mass of pigs raised on feed 1 to  those raised on feed 2.  

Equivalent to testing :1 = :2 (or :1 – :2 = 0)
Appropriate coefficients are C1 = 1, C2 = –1, C3 = 0, C4 = 0

As above, a simple 2-sample t-test between groups (in isolation) versus the contrast after ANOVA:

Example 3: Compare mean mass of pigs raised on feed 3 to those raised on feeds 1,2,4.  

Equivalent to testing: :3 = the mean of :1 + :2 + :4  
or: :3 = (:1 + :2 + :4)/3.  

Appropriate coefficients are C3 = 1, C1 = –1/3, C2 = –1/3, C4 = –1/3 (note the coefficients sum to zero). 

Recall that this was the same hypothesis we tested using the extra SS approach within the context of
ANOVA.  Compare that result to that of a linear contrast: 

1

2

3

4

Estimate

Std Error

t Ratio

Prob>|t|

SS

   0.5

   0.5

  -0.5

  -0.5

-28.34

1.3484

-21.01

 2e-12

3778.2

Test Detail

Sum of Squares

Numerator DF

Denominator DF

F Ratio

Prob > F

3778.2222353

           1

          15

441.55304659

 1.54011e-12

Contrast

Assuming equal variances

Estimate

Std Error

Lower 95%

Upper 95%

 -8.6800

  1.8951

-13.0501

 -4.3099

Difference

  -4.580

t Test

   8

DF

  0.0018

Prob > |t|

UnEqual Variances

Estimate

Std Error

Lower 95%

Upper 95%

  -8.680

   1.895

 -13.052

  -4.308

Difference

  -4.580

t Test

7.98307

DF

  0.0018

Prob > |t|

t Test

1

2

3

4

Estimate

Std Error

t Ratio

Prob>|t|

SS

     1

    -1

     0

     0

 -8.68

  1.85

-4.692

0.0003

188.36

Test Detail

Sum of Squares

Numerator DF

Denominator DF

F Ratio

Prob > F

     188.356

           1

          15

22.012777561

0.0002893773

Contrast
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Analysis of Variance

Source (of Variation)
Sum of
Squares df

Mean
Square F Ratio Prob > F

Among groups (Treatment) 4226.35  3 1408.78 164.64 <0.0001

    Feed 3 vs others 2528.53  1 2528.53 295.39 <0.0001

    Among other groups 1702.82  2   851.41   99.46 <0.0001

Within groups
  (Residual or Error)

  128.35 15       8.56

Total 4354.70 18

Note that the SS, F-statistic, and P for the “Feed 3 vs others” effect in the
extra SS model above is the same as that reported in the “contrast” output
window.  
Recall that a 2-sample t-test is identical to a 1-way ANOVA with 2 levels or
groups. 

Note that because we are interested in comparing 2 groups (feed 3 versus
1,2,4), that either a t or F is appropriate.  In the contrast output we get both;
these are identical as t2 = F (here (17.19)2 = 295.5).

The benefit of using linear combinations within the framework of ANOVA
allows us to use the pooled variance estimate from all 4 groups as
denominators for test statistics. 

1

2

3

4

Estimate

Std Error

t Ratio

Prob>|t|

SS

-0.333

-0.333

     1

-0.333

28.297

1.6461

 17.19

 3e-11

2528.5

Test Detail

Sum of Squares

Numerator DF

Denominator DF

F Ratio

Prob > F

2528.5305614

           1

          15

295.50415599

2.794498e-11

Contrast
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Feed Grp

1

2

3

4

     0

     0

     0

     0

+

+

+

+

-

-

-

-

Click on + or - to make contrast values.

New Column Done Help

Contrast Specification

Contrast

1

2

3

4

Estimate

Std Error

t Ratio

Prob>|t|

SS

     1

     0

     0

    -1

-25.62

  1.85

-13.85

 6e-10

  1641

     0

     1

     0

    -1

-16.94

  1.85

-9.157

1.6e-7

717.41

     0

     0

     1

    -1

 14.11

1.9623

7.1907

3.1e-6

442.43

Test Detail

Sum of Squares

Numerator DF

Denominator DF

F Ratio

Prob > F

4226.3478947

           3

          15

164.64152297

1.061311e-11

Contrast

• Using JMP to specify and solve linear combinations

Launch Fit Model platform, specify the appropriate variables for the
ANOVA, including the response variable Y (mass) and explanatory
effects X (feed type).  

Running the model generates the F-statistic that test the null
hypothesis of equal means which we reject. 

To examine the more specific questions with linear combinations,
click the triangle next to the effect of interest and select LS Means
Contrast... which yields a “Contrast Specification” dialog box where
you click + or - to specify the contrast of interest.  The appropriate
orthogonal coefficients are generated automatically.  

• Unplanned Comparisons

Are appropriate when there were no pre-planned comparisons of group
means; hence, all possible pairs of means compared. 

As the number of groups increase, the number of pairwise comparisons
increases dramatically; as a result, the true " is lower than the
established "-level (" is the probability of a Type I error).  

E.g., with I = 3 groups and " = 0.05, the true " = 0.14. 

A 95% confidence interval for an estimate captures its parameter 95%
of the time.  Considering several 95% CI’s simultaneously is called a
family of CI’s.  The frequency with which all of the intervals in the family
simultaneously capture their parameters is always < 95%.  

This problem increases with the number of groups and comparisons,
and is known as The Multiple Comparisons problem for Simultaneous
Inferences.  Hence, we distinguish:

• Individual or Pairwise confidence level:  frequency with which a single interval captures its
parameter.  

• Overall or Familywise confidence level:  frequency with which all intervals capture their
parameters. 

With a family of k CI’s, each with pairwise confidence level 95%, the familywise CL can be no > 95% and no
< 100(1 – 0.05k).

If k = 3, the smallest familywise CL possible is 100(1 – 0.05[3])=85%.  

Upshot: This compound uncertainty increases the probability of making mistakes (finding
differences that do not really exist which are Type I errors) when drawing more than one
inference. 

• If interested in only a few planned comparisons, the pairwise confidence level must be considered
and controlled.  

• If interested in all possible pairs of groups, the familywise confidence level should be considered
and controlled.  

Many procedures exist to combat compound uncertainty resulting from unplanned multiple comparisons;
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each attempts to maintain the specified "-level for the entire “family” of pairwise comparisons.  

Multiple comparisons procedures function by modifying the usual confidence interval for differences
between pairs of means with a multiplier that adjusts the t-value used for a single interval:

Interval half-width  = (Multiplier) x (Standard error)

Standard error of the difference is the usual pooled standard deviation times the square root of the sum of
reciprocals of sample sizes.  

Interval half-width is compared to the difference between each pair of means (e.g., |y6i ! y6j|); if this difference
is > the specified half-width, the difference is considered > the specified ".  

Multiple comparisons procedures include Tukey-Kramer, Scheffé, Protected LSD, Bonferroni, and others;
each attempts to controls the familywise confidence level differently. 

For example, the multiplier for Scheffé’s procedure is  which is based on an (1 – ")( ) ( ), ( )I F I df  1 1 1 

percentile F-distribution with I – 1 (between-group) numerator and df (within-group) denominator degrees of
freedom.  

The Scheffé multiplier controls the overall confidence level for the family of parameters consisting of all
linear contrasts among group means.

When used for the smaller family of differences between pairs of group means, the overall confidence is at
least 100(1 – ")% (e.g., 95%) and is generally higher (e.g., 98%). 

Using JMP for Unplanned Comparisons

Choose the Fit Y to X platform, the appropriate Y and X variables, then Compare Means.  JMP offers 4
multiple comparison tests: 

• Compare Each Pair:  LSD procedure; computes pairwise
comparisons among means using Student's t test.  This
procedure does not control the familywise error rate; 

• Compare All Pairs:  Tukey or Tukey-Kramer HSD
procedure; controls the familywise error rate; exact test if
sample sizes are the same; conservative if sample sizes
differ.  

• Compare with Best:  Hsu MCB procedure; tests whether
means are less than the unknown maximum or greater than
the unknown minimum. 

• Compare with Control:  Dunnett's procedure; tests
whether means are different from the mean of a control
group. 

You can adjust the "-level used by these procedures
(default is 5%) if you choose Set !lpha Level from the menu
within the Fit Y by X platform.  

Note that LSD and Tukey are also available in the Fit Model
Platform.

3

4

2

1

   0.000

 -14.110

 -31.050

 -39.730

  14.110

   0.000

 -16.940

 -25.620

  31.050

  16.940

   0.000

  -8.680

  39.730

  25.620

   8.680

   0.000

Dif=Mean[i]-Mean[j]

3 4 2 1

Alpha= 0.05

 

Comparisons for all pairs using Tukey-Kramer HSD

 2.88215

q*

    0.05

Alpha

3

4

2

1

  -5.961

   8.454

  25.394

  34.074

   8.454

  -5.332

  11.608

  20.288

  25.394

  11.608

  -5.332

   3.348

  34.074

  20.288

   3.348

  -5.332

Abs(Dif)-LSD

3 4 2 1

Positive values show pairs of means that are significantly different.

3

4

2

1

Level

A

 

 

 

 

B

 

 

 

 

C

 

 

 

 

D

 100.35000

  86.24000

  69.30000

  60.62000

Mean

Levels not connected by same letter are significantly different

Means Comparisons
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 0.05

All Pairs

Tukey-Krame

 0.05

Oneway Analysis of Mass By Feed Grp

Additionally, in JMP provides Means Comparison Circles as a visual way to compare pairs of means.  

When you click on a mean’s circle, the circles for all means that are not significantly different from the
selected mean at the specified "-level are highlighted.  Circles for means that differ either do not intersect
or intersect slightly; if circles intersect at an angle of more than 90 degrees or if they are nested, means do
not differ at the specified "-level. 

When you click on a mean’s circle, the circles for all means that are not significantly different from the
selected mean at the specified "-level are highlighted.  Circles for means that differ either do not intersect
or intersect slightly; if circles intersect at an angle of more than 90 degrees or if they are nested, means do
not differ at the specified "-level. 

Choosing a Multiple Comparison’s Procedure

The most appropriate procedure to use depends on the specific application.  

SAS offers about 15 different procedures.  In general, LSD is the most liberal (i.e., has the narrowest
confidence intervals) and Scheffé the most conservative (widest confidence intervals).  

If the comparisons include all pairs of means, then Tukey-Kramer is recommended by Sleuth.  


