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RNR / ENTO 613 –  Simple Linear Regression 
 
Context 
 
Regression analysis investigates the statistical relationship between 2 continuous 
variables: a reponse variable (Y) and an explanatory variable (X). The simple linear 
regression model specifies that the relationship between the mean of a response and the 
explanatory variable is a straight-line. 
 
In general, linear regression is appropriate when the roles of response and explanatory 
variables are distinguishable.  In both experimental and observational studies, the goal of 
the regression approach is to determine how changes in the explanatory variable affect 
the response. 
 
Example: Describe the relationship between temperature and development time in a 

given insect species.  Here the interest is in how temperature affects 
growth rate, not the reverse. 

 
Example: Describe the relationship between leg and arm length in baboons; there is 

no clear dependence of one variable on the other.  Here, the appropriate 
approach is correlation analysis, not regression. 

 
Applications of linear regression technique 
 
1) Estimation of functional relationships between variables, which is achieved by 
estimation of the parameters of the regression line (i.e. slope and intercept).  Example: 
Relationship between time after slaughter and pH of meat (Sleuth, Chap. 7). 
 
2) Prediction of the distribution of specific values of the explanatory or response variable 
(mean of Y at X, mean X at a single Y, value of a single Y at X, value of a single X at a 
single Y).  Example: from the regression between meat pH and time after slaughter, it 
was predicted that at least 95% of steer carcasses would reach a pH of 6.0 between 2.9 
and 5.1 hours after slaughter. 
 
Overview of least squares regression approach 
 
1- The least squares approach is used to estimate the value of the parameters of the 

regression line (i.e. slope and intercept) 
2- The standard error of the statistics (estimated slope and intercept) is computed using: 

a) the variance of the explanatory variable  
b) the standard deviation of the response variable, computed from the residuals of 

the regression line 
3-  t-tests are used to assess possible values for the parameters (i.e., the slope and 

intercept): Confidence intervals are established for these parameters.  
4- Confidence or prediction intervals may be used for prediction of a future response, or 

for guessing the X value that results in a given mean response. 
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Historical background 
 
Resemblance between offspring and their parents is the fundamental concept in 
quantitative genetics (it is called the heritability).  Sir Francis Galton, Charles Darwin’s 
cousin, introduced a graphical representation of offspring-parent resemblance.  He 
showed that a least squares line fitted to data of parent and offspring height was different 
from the line representing perfect inheritance (slope of 1).  Offspring of tall parents 
regressed downward toward the offspring mean, while offspring of short parents 
regressed upward toward the mean.  Galton thus called this best fit line a regression. 
 
<<Fig. Galton>> 
 
The regression phenomenon was first seen as a major problem for Darwin’s theory of 
evolution, since continuous regression of traits toward the mean (following breeding) 
would oppose the effects of natural selection.  The dilemma was solved by a rediscovery 
of Mendelian genetics.  With Mendelian inheritance, the shape of the regression line 
remains constant across generations as long as selection does not change gene frequency.  
Large parents produce smaller offspring on average (with dominance), but large offspring 
are always regenerated in similar proportions in the population according to the rules of 
Mendelian inheritance.  The regression (environmental) effect described in Sleuth (p. 
193) would be a complementary explanation for the fact that extreme parents tend to 
produce offspring that are closer to the population mean. 
 
On the origin of normal distributions 
 
A central assumption in parametric statistics is that variables are normally distributed.  
The theory of quantitative genetics explains why such an assumption holds for many 
biological characters.  Quantitative genetics assumes that most traits are controlled by 
many loci that contribute a small amount to the trait value, and environmental effects that 
act independently and also contribute small effects to the phenotype.  If these effects 
combine additively, then the overall phenotype of an individual depends on the sum of 
randomly selected small effects that operate during development.  The phenotype is thus a 
normally distributed random variable that centers on the average sum of those effects. 
 
<<Fig 1.3 in Roff>> 
 
Regression Approach and Terminology 
 
Let Y denote the response variable, and X the explanatory variable.  μ {Y ⎪ X} 
represents the regression of Y on X, which is read as “the mean of Y as a function of X”. 
 
The simple linear model is: 
 
μ{Y ⎪ X} = βo + β1X 
 
where βo is the intercept of the line, and β1 is the slope.   
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The slope is a statistic that estimates the rate of change in the mean response per one-unit 
increase in the explanatory variable, for any X value within the range of interest: 
 

β1 = 
{ } { }

ab
aXYbXY

−

=−= μμ
 

 

{Y ⎢X = x} should be read as “the mean of Y when X = x”. 
 
The units for β1 are the ratio of the units of the response variable to the units of the 
explanatory variable.  In the insect growth example, this could be days / °C. 
 
Research questions often concern the change in the mean response associated with a 
specific change in the explanatory variable (for example from a to b).  This is expressed 
as: 
 
{ } { } ( )abaXYbXY −==−= βμ

1
 

 
Regression model Assumptions 
 
The Ideal Normal Simple Linear Regression Model assumes that the response variable 
(Y) is a random variable (i.e. a variable that we do not control).  The explanatory variable 
(X) may be random or fixed (a variable that we control).  The explanatory variable is 
measured with small error compared to Y. 
 
Under these assumptions, the regression line is fitted with the method of least squares.  
We envision a series of subpopulations of responses (Y) at each level of X.  All the 
subpopulations have equal standard deviation, and their means fall on a straight line. 
 
Thus the major Assumptions of least square regression are: 
1-Normality of subpopulations 
2-Linearity of the subpopulation means 
3-Equal SD of the subpopulations  
4-Independence (within and among subpopulations) 
 
<<Fig. 7.5 Sleuth>> 
 
Note on measurement error of the X variable 
 
Large measurement errors in the X-variables may cause estimation problems: the 
estimates of the slope of Y on X with a least squares method (explained below) in such 
case are biased.  <Fig Bias / Precision>  This is what is meant in the Big Bang study 
(p.177) : “Uncertainty due to errors in measuring velocities (i.e. the X’s) is not included 
in the p-values and confidence coefficients.  Such errors are potential source of 
pronounced bias”. 
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In practice, the least square method is appropriate, as long as errors in the Xs is small 
compared to errors in the Ys.  
 
The choice of Models for analyses of data when error measurement in X is not small is 
controversial.  A general rule (see Sokal and Rohlf for more details): 
 

1) Regression lines used mainly for purposes of prediction can be fitted with the 
least square method. 

2) When one whish to determine precisely the slope of the association between 2 
random variables (e.g., in morphometric work), other techniques such as Major 
axis regression should be used. 

 
Example:  Determine the relationship between weight (X) of individuals from a fish 
species and the number of eggs produced (Y).  Here the interest is to compare the value 
of the slope among closely related species to assess evolutionary questions about 
allocation of resources to reproduction, not to predict reproductive output for a given fish 
size. 
 
Weight (in g × 100) Eggs (in thousands) 

14 61 
17 37 
24 65 
25 69 
27 54 
33 93 
34 87 
37 89 
40 100 
41 90 
42 97 

Least square estimation (assumes Xs measured with little error): 
 
Slope: 1.86 eggs × 103 / 100 g     95% CI  (1.12, 2.62) 
Intercept:  19.77 
 
Reduced major axis (assumes 2 variables distributed according to a bivariate normal 
distribution): 
 
Slope:  2.12   95% CI (1.37, 2.87) 
Intercept:  12.19 
 
[With large error in the Xs, the slope of the reduced major axis regression is always 
greater than that of the least squares regression] 
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Least Squares regression Estimation 
 
The method of least Squares is a general procedure to estimate parameters in a statistical 
model. 
 
For simple linear regression, the goal is to find the best-fitting statistics, β̂ o

and β̂ 1
, for 

a data set comprising n pairs of observations (Yi, Xi).  These estimates then combine to 
provide an estimated mean function: 
 
{ } XXY

o ββμ ˆˆ
1

+= . 

 
This expression can be used to calculate a value of Y for any Xi.  Y estimates the mean of 
the distribution of the response variable.  The estimated mean is called a fitted value or 
predicted value and is represented by fiti.  The difference between the observed response 
and its estimated mean is the residual, denoted by resi.   
 

{ } XXYfit ioii ββμ ˆˆ
1

ˆ +==    and     resi  =  Yi – fiti           

 
<<Fig 7.6 in Sleuth>> 
 
A residual represents the distance between a measured response and its fitted value.   
 
The distance between all responses and their fitted values is estimated by the residual 
sum of squares. 
 
Least Squares Estimates 
 
An estimate obtained with the method of least squares (LS) minimizes the sum of the 
squared residuals: 
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For simple linear regression, the LS estimator of the slope is: 
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where the numerator is the sum of the crossproducts of X and Y, and the denominator is 
the sum of squares for X.   
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Slopes can be positive, negative, or zero.  They predict the change in Y that results from a 

one unit change in X.  For the fish fecundity vs weight example, β̂ 1
= 1.86, indicating 

that a one unit change in X (weight × 102 g) results in an increase in fecundity by 1.86 
units (eggs × 103). (or b1 = 18.6 eggs/g)   
 
Both Y and X always lie on the line fitted with least squares.  Thus after estimating 

β̂ 1
, we can solve for β̂ o

 by substituting the mean for Y and X into the formula for a 

line, XY
o ββ 1
+= :          XY

o ββ ˆˆ
1

−=  

 
Sampling distribution the Least Squares estimates 
 
The estimators β̂ o

 and β̂ 1
are unbiased when the X variable is measured with small 

error.  
 
<<Fig Biais / Precision>> 
 
 

The Student’s t distribution 
SE

t
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=  is used to draw inferences about estimates of 

the slope and intercept.  To do so, we need to estimate the standard deviations of β̂ o
 and 

β̂ 1
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which depend on: 

1. n, which is known 
2. the sample variation in the explanatory variable, sx

2, which is known 
3. the population standard deviation of the response, σ, which is not known. 

 
<< Fig. 7.7 Sleuth>> 
 

σ is estimated using the residuals from the regression: 
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freedom of Degrees
residuals  squaredall of Sum

=σ̂ , where df for the residuals = 

 
No. Observations – No. Parameters in the model for the means = n - 2. 
 
Tests and Confidence intervals for Slope and intercept 
 
The standard null hypotheses about simple linear regression parameters are: 
 
Ho: βo = 0   Ha: βo ≠ 0 
Ho: β1=0 Ha: β1 ≠ 0 
 
The general form of the t-ratio, with n –2 df is: 
 

( )
estimate parameter of SE

value edhypothesiz - estimate parametert =  

 
CI’s are used to determine probable values of the regression parameters.  They take the 
general form: 
 
Parameter estimate ± t n-2, (1-α/2) SE (parameter estimate) 
 
An example:   
 
Can we predict the number of visitors to a recreation area by knowing the number of cars 
in the parking lot?  On 12 days, an employee monitors the number of cars in the parking 
lot and the number of users in the park.  The goal is to assess whether it is reasonable to 
predict number of people in the park from knowledge on number of cars present, which is 
information that is easy to get. 
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Summary of Fit 
Rsquare 0.97669
RSquare Adj 0.974359
Root Mean Square Error 14.71194
Mean of Response 121.6667
Observations (or Sum Wgts) 12
 
Analysis of Variance  
Source DF Sum of Squares Mean Square F Ratio
Model 1 90688.256 90688.3 418.9975
Error 10 2164.411 216.4 Prob > F
C. Total 11 92852.667 <.0001
 
Parameter Estimates 
Term  Estimate Std Error t Ratio Prob>|t|
Intercept  -0.947634 7.342907 -0.13 0.8999
VEHICLE  3.0212969 0.1476 20.47 <.0001
 
The test of the null hypothesis of no association between car and visitor number (i.e. zero 
slope) is t = (3.021 – 0)/ 0.148 = 20.47 with n – 2 df (12 –2 =10) has a p-value smaller 
than 0.0001.   
 
The CI’s giving probable values for the regression parameters are: 
 

β̂ 1
± t n-2, (1-α/2) SE ( β̂ 1

)   =  3.021 ± 2.228 (0.148) = 2.7, 3.3 people/ car.  Each new car 

brings about 3 people, and the 95 % CI is 2.7, 3.3. 
 
The intercept is not different from zero (95 % CI is –17.3, 15.4), suggesting that the main 
access to the park is by car (an intercept greater than zero would be expected if users 
have access to the park by hiking, cycling, flying, etc…..).   
 
Making a single prediction with the regression line 
 
When making predictions based on a regression model, we assume that future values will 
behave similarly to the ones observed in the past.  For example, making predictions about 
crowding in the park for the winter season based on a regression model estimated for the 
summer could be misleading.   
 
We obtained the following equation for the regression line: 
 
Y = -0.95 + 3.02 X 
 
With that equation, we can use interpolation to make 2 types of predictions: 
 
What is the expected average number of people in the park on days when we have 10 
cars in the parking lot? We want to predict a probable value for a subpopulation mean 
with a confidence interval.  
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 Our best guess is:  μ {Y ⎢X = Xo} =  μ {Y ⎢X =10} = - 0.95 + 3.02 (10) = 29.2 
 

 
What is the expected number of people in the park on days when we have 10 cars in the 
parking lot? Here we want to predict the value of a single response with a prediction 
interval. 
 

Our best guess is:  Pred {Y ⎢X = Xo}= μ {Y ⎢X = 10} = - 0.95 + 3.02 (10) = 29.2 
 
 
In both cases the best prediction is the same, but the precision of the estimate will vary.  
The standard error will be smaller for prediction of a mean response than for prediction 
of a single observation.  
 
The Standard Error for the estimated mean response (i.e. Y ) is: 
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The Standard Error for the estimated predicted value (i.e. Y) is: 
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The SE for an estimated mean only considers uncertainty about the position of the 
predicted subpopulation mean with respect to position of the true subpopulation mean. 
 
The SE for a predicted value considers uncertainty about position of the subpopulation 
mean and in addition of the future value (which is σ̂ 2

) with respect to the position of the 
true subpopulation mean.  So: 
 
Prediction error = Sampling error (Y vs μ)   + Estimation error ( μ̂  vs μ) 
 
How do we estimate the above SE for a predicted subpopulation mean or a predicted 
individual value? 
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1. SE for predicted subpopulation mean and computation of a confidence interval: 
 
For the Park example, a computer centering trick can be used for estimating the SE for 
the predicted mean response when Xo =10.  The trick consists in computing the 
regression of Y vs X* = X – Xo, which centers X at Xo (i.e. Xo becomes the intercept). 
 
Remember that the mean Y predicted by the regression model when Xo = 10 was 29.2.  
This value (29.2) will correspond to the intercept of the “centered” regression (i.e. Y vs X 
* = X – 10).  The Standard Error for the mean Y when X = 10 can therefore be obtained 
directly from the computer output if we use the centering trick... 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
RESULTS FOR THE CENTERED REGRESSION 
 
Parameter Estimates 
Term  Estimate Std Error t Ratio Prob>|t|
Intercept  29.265335 6.197901 4.72 0.0008
CENTERING  3.0212969 0.1476 20.47 <.0001
 
95 % CI for μ̂  {Y ⎜ X =10}  =  {Y ⎜ X =10}  ± t 10 (0.975) X SE [ μ̂ {Y ⎜ 10}] 
       =   29.2 ± 2.228 X 6.198 
       =   29.2 ± 13.8  =  15.4, 43.0 
 
2. SE for a predicted value and computation of the corresponding prediction 
interval: 
 
95 % prediction interval for Pred {Y ⎜ X = 10} 
 

SE [Pred{Y ⎜ X =10}] = { }[ ]22 ˆˆ XY oSE μσ +  
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=   [ ]( )2198.64.216 +   (216.4 is Error MS in 
ANOVA Table) 

          =    15.96 
Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio
Model 1 90688.256 90688.3 418.9975
Error 10 2164.411 216.4 Prob > F
C. Total 11 92852.667 <.0001
 
 
{Y ⎜ X =10} ± t 10 (0.975) X SE [Pred{Y ⎜ X =10}]  =  29.2 ± 2.228 X 15.96 
        =  29.2 ± 35.6  

= - 6.4, 64.8 
 
More about the estimated mean at some value of X 
 
1- Precision in estimating μ {Y ⎪ X} is not constant for all values of X: precision is 

greater near the sample average, simply because the value XX o − that enters in 
calculation of the SE gets larger as Xo gets farther from the mean X.   
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If the goal of an experimental study is to predict a response at a specified X, the 
values of the explanatory variable should be chosen to fall on each side of X.   

 
2- There is compound uncertainty associated with predictions of more than one mean.  

To maintain the expected nominal rate (α) when more than one prediction is needed, 
a Bonferroni correction [the confidence level for k predictions is 100 (1 - α/k)] can be 
used when only few predictions are made.   

 
Alternatively, the Workman-Hotelling procedure can be used to compute confidence 
bands.  In 95 % of the cases when they are constructed, the confidence bands will 
include the correct predicted response corresponding to a value Xi within the range of 
the observed Xs.   
 
To build confidence bands, the t-multiplier in the formula for confidence intervals is 
replaced with a Scheffé multiplier based on a F-percentile with 2 and (n –2) df. 

 
For a 95 % CB, the lower and upper bounds at each X is given by: 

 
{ } [ ]( ) }]{ˆ95.2ˆ 2,2 XYSE[XY F n μμ ××± −  
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3- Prediction bands delimiting the range of many predicted individual Y values can be 
obtained by using the appropriate SE in the above Workman-Hotelling method. 

 
<<Fig. 7.11 Sleuth>> 
 
Calibration: or guessing the X that results in a given Y value 
 
Interest is in guessing the X that produces a specific reponse.  This is known as 
calibration or inverse prediction.   
 
To get an inverse prediction, simply inverse the prediction relationship: 
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to estimate the X at which the mean of Y is Yo, the SE for calculation of the confidence 
interval is: 
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<<Fig. 7.4 Sleuth>> 
 
Correlation 
 
Regression goal: determine functional relationship between a response variable Y and an 
explanatory variable X: the interest is in assessing how change in X affects Y.  In 
regression, the roles of response and explanatory variables are easily distinguishable. 
 
Correlation goal: determine the degree of linear association between 2 variables when 
there is no clear response variable. 
 
The sample correlation coefficient ( r ) , also called the Pearson’s product-moment 
correlation coefficient, is calculated as: 
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where sx and sy are sample SD’s. 
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r expresses the amount of linear association between two variables, and ranges between –
1 and +1. 
 
 When  r > 0, two variables are said to be positively correlated (or associated). 
 When r < 0, X and Y are negatively correlated 

When r =0, X and Y are uncorrelated, i.e. do not show any linear association. 
 

 
A hypothesis test involving r attempts to guess the value of ρ (rho, the population 
correlation coefficient), which is expressed as : 
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The test assume that samples for each variables have been drawn at random from a 
normal population, i.e that the 2 variables are distributed according to a bivariate normal 
distribution (Y normally distributed at each X; X normally distributed at each Y).   
 
Correlation should only be used for statistical inferences when both the X and Y are 
random variables: never when X is fixed. 
 
<<Fig Sokal and Rohlf>> 
 
To test the null hypothesis that the correlation between two variables is zero (i.e. Ho: ρ = 

0 vs. Ha: ρ ≠0), use a Student’s t-test:  t = 
ser

r
which has n-2 df. 

 

The standard error of r is:  
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However, for a null hypothesis that ρ ≠ 0, the distribution of 
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is not a t distribution with n – 2 df.   
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When one is interested in testing whether ρ = another value than zero, a transformation 
of r (due to R.A Fisher) and the Z distribution must be used instead of the Students-t 
distribution (see Sokal and Rohlf for more details). 
 
Example:  Determine the correlation between average development time of aphid clones 
on two species of host-plant. (JMP: Analyze, Multivariate, Pairwise Correlations) 
 
HostA HostB 
18 12 
17 12.5 
16 13.5 
16 14 
15.5 14 
14 13 
13.5 14.5 
12.5 14 
12.5 15.5 
11.5 15 
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