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RNR / ENTO 613 --Assumptions for Simple Linear Regression 
 
Statistical statements (hypothesis tests and CI estimation) with least squares estimates 
depends on 4 assumptions: 
 
1. Linearity of the mean responses 
2. Constant variance of the responses around the straight line 
3. Normality of subpopulations (Y’s) at the different X values 
4. Independence within and across subpopulations 
 
Relative importance of these assumptions depends on type of inferences: 
 

Proposed Inference Required Assumptions 
Predicting a single Y at X; or single X at Y 
(prediction interval) 

All assumptions of models are necessary 
(normality is assumed) 

Estimating the mean Y at X; or mean X at 
Y (confidence interval).   

All assumptions except normality 
(normality of distribution of mean is met 
because of Central Limit Theorem) 

Estimating value of the slope  Only linearity maters (lack of 
independence affects the SE but not the 
estimate of the slope).  

 
Model Assessment with graphical tools: Scatterplot of response variable versus 
Explanatory variable 
 
A simple scatterplot of Y * X is useful to evaluate compliance to the assumptions of the 
linear regression model.  The pattern for the means and variability of the responses 
suggests a strategy for analysis. 
 
<<Fig. 8.6 Sleuth>> 
 
1- The regression is a straight line and the variability of Y is about the same at all 

locations along the line: use simple linear regression. 
2- Regression is not a straight line but SD is constant: transform X 
3- Regression line is not monotonic: use multiple regression. 
4- Regression not a straight line and SD increase as a function of X: transform Y 
5- Regression is a straight line, homogenous SD, but outliers: use simple regression tool 

and report presence of outliers 
6- Regression is a straight line but SD increases in X: use weighted regression. 
 
Note on Weighted regression: 
 
The variance may increase with increases in the explanatory variable even if the 
regression line is linear.  This suggests that the chance fluctuation (i.e. variance of 
estimation error) affecting Y increases with increased values of X. 
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For example, on days when many people drive to the park, many other people may also 
get there by other means.  Thus the more people in the park, the greater would be the 
error about the regression line: SD (Y) would be proportional to X. 
 
With such a pattern, it is not recommended to predict single or average values of Y or X 
with a simple linear regression approach because no single estimate of SE applies across 
all the Xs values.  However, the slope of the line can be estimated without bias using 
weighted regression. 
 
Weighted regression gives less influence to values of Y that are subject to larger error for 
estimating the parameters of the line.  In weighted regression, the least squares estimate 
minimizes: 
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where wi is a weight given to every observation. 
 
Depending on the pattern of the relation between X and the variance of Y, one may 
choose wi = 1 / Xi  (variance proportional to X: “V” shape of residuals), or wi = 1 / Xi

2 

(variance proportional to SQRT X: “Horn” shape of residuals).   
 
JMP allows computation of weighted regression models (in the Fit Model platform). 
 
Scatterplot of residuals versus Fitted values 
 
Assessment of the adequacy of regression models is done with plots of residual vs fitted 
values.  These show the error (residual) about the fitted line when the linear component 
of variation has been removed.  Looking at distribution of the residuals about a horizontal 
line makes it easier to assess curvature and spread of observations. 
 
These plots are essential for evaluating nonlinearity, nonconstant variance, and presence 
of outliers.   
 
The Park example: 

 

-30
-20
-10

0
10
20

R
es

id
ua

l

0 25 50 75 100
VEHICLE



 76

Assessing whether a transformation improves fit of the model is done by trial and error. 
 
Example:  breakdown times for insulating fluids under different voltages (Sleuth case 
8.1.2) 

Time = 1886.17 – 53.95 Voltage 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      SQRT(Time) = 61.78 – 1.69 Voltage 
 
 
 
 
 
 
 
 
 
        
 
 
 
 
 

Ln (Time) = 18.95 – 0.50 Voltage 
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Testing whether the regression parameters differ from zero is not assessing model fit.  In 
the above examples, the null hypothesis of β1 = 0 is rejected in the three analyses, but the 
assumption of linearity and homogeneity of variance are only met when a logarithmic 
transformation of Y is used.  
 
Interpretation of linear relationship after log transformation 
 
Only Y is log transformed: 
 
A one-unit change in X results in a multiplicative change of exp (β1) in the median of Y: 
 

Median{Y ⎜(X+1)} / Median {Y ⎜ X} = exp (β1) 
 
Example:  Breakdown time versus Voltage of insulation fluids 
 
Ln (Time) = 18.95 – 0.50 (Voltage).  Each increase of 1 kV results in a change of e (-0.50) 

= 0.61 in the median breakdown time.  Thus each increase in 1 kV results in a 0.61 
decrease (i.e., 39%) in breakdown time.   
 
The 95 % CI for β1 was –0.62 to –0.39, so the 95 % CI for the f0.61 decrease is exp (-
0.62) to exp (-0.39), or 0.54 to 0.68. 
 
Only X is log transformed: 
 
A doubling of X results in a β1 log (2) change in the mean of Y: 
 
 μ{ Y ⎜ln (2X)} - μ{ Y ⎜ln (X)} =  β1 ln (2) 
 
Example:  Change in pH as a function of time in meat 
 
pH = 6.98 – 0.726 ln (Time).  A doubling of time after slaughter is associated with a ln 
(2)(-0.726) = 0.503 unit change in pH, i.e. the mean pH is reduced by 0.503 for each 
doubling of time after slaughter. 
 
The 95% CI for β1was from –0.805 to –0.646, so the 95 % CI for the reduction in pH per 
doubling of X is from ln (2)(-.805) to ln (2) (-.646), or from 0.449 to 0.558. 
 
Both X and Y are log transformed: 
 
A doubling of X results in a multiplicative change of 2β1 in the median of Y 
 

 Median{ Y ⎜ln (2X)} - Median{ Y ⎜ln (X)} = 2(β1) 
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Example: Island size versus number of species 
 
Log (Species) = 1.94 + 0.250 log (Area).  Thus an island of area 2A will have a median 
number of species that is 2 0.250 greater (i.e. 1.19 fold) than an island of area A.  The 95% 
CI for β1 was from 0.219 to 0.281, so the 95 % CI for the change in median is 2 0.219 to 2 
0.281, or 1.16 to 1.22.  << Display 8.2>> 
 
Interpretation for other types of transformations  
 
May be difficult.  Interpretation is not required: 
 
1) if the regression is used to detect presence of an association between two variables. 
2) to predict values of X and Y.  Here the only requirement is to back transform the 

predicted value (and their CI). 
 
Simple regression analysis with a F-test (extra-sum-of-squares F-test) 
 
The approach for linear regression described so far used the distribution of the least 
squares estimates and t-tools to draw statistical inferences. 
 
Another approach uses the Extra sum of squares method to compare the regression model 
(full model) to the grand mean model (reduced model).  To test the linear model, we 
compare the difference in “explanatory power” between the reduced and a full model. 
 
The sum of the residual sum of squares measures the variability in the observations that 
remains unexplained after we fit a regression model.   
 
The sum of squares (SS ) calculated after fitting the Grand mean is: 
 

Total SS = ( )∑ = −n

i i YY1  2 
 
The SS calculated after fitting the regression line is: 
 

Error SS = ( )∑ = −n

i ii YY1 ˆ 2 
 
The difference between the two is the extra variability explained by the regression model: 
 
Total SS   –  Error SS   =  Model SS 
 
Unexplained by  – Unexplained by  Extra variation   
Grand mean regression    explained by regression 
 
df = n – 1   df = n –2   df = 1 = [n –1] – [n –2]  
 
The model comparison  (regression vs grand mean) is given by: 
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F =  
df  SS/Error
df /  SSModel

 

 
If the null hypothesis of equal mean responses is correct (i.e. 0

1
=β ), then the 

numerator and denominator of the F-statistic both estimate the same population variance 
(σ 2 ), so the F-statistic should be close to one.  If the null hypothesis is not correct, the 
F-statistic will be greater than 1. 
 
 
The Park example:  n = 12 observation pairs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(The F-statistic is equal to the square of the t-statistic, i.e. 20.472 = 419.00) 
 
 
Assessment of the Regression Fit using ANOVA (Lack of fit test): 
 
When a response variable is measured repeatedly for each (or some) level of the 
explanatory variable (i.e. with replicates), the Extra SS approach provides a way for 
comparing the fit of simple linear regression model (reduced model) to the separate-
means model (full model, i.e. one-way ANOVA).   
 
<<Display 8.4>> 
 
The question:  Is the straight-line regression model sufficient to describe the data, or 
should we instead use a separate-mean model?  (because the mean responses are not 
linear) 
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0

50

100

150

200

250

300

0 25 50 75 100
VEHI CLE

Anal ysi s of  Var i ance

Source
Model
Er ror
C Tot al

DF
    1

   10
   11

Sum of  Squares
 90688. 256
  2164. 411

 92852. 667

Mean Squar e
 90688. 3

   216. 4

F Rat i o
418. 9975

Pr ob>F
  <. 0001

Paramet er  Est i mat es

Ter m
I nt er cept
VEHI CLE

Est i mat e
- 0. 947634
3. 0212969

St d Er ror
7. 342907

  0. 1476

t  Rat i o
 - 0. 13
 20. 47

Prob>| t |
0. 8999
<. 0001



 80

 
1.  Separate-means model (Anova):  μ{Y⎢Xi}= μi   (i parameters) 
2. Simple linear regression model:  μ{Y⎢Xi}= βo + β1Xi  (2 parameters) 
3. Equal-means model:   μ{Y⎢Xi}= μ   (1 parameter) 
 
We can now use the Extra sum of squares method to compare the simple regression and 
ANOVA models (i.e., perform a lack of fit test). 
 
Example:  Insulation fluid data (7 Voltage treatments) 
 

ANOVA (X coded as 
ordinal) 

 
 
 
 
 

 REGRESSION (X 
coded as continuous) 
 
 
 
 

In both cases, Total SS is the variability left unexplained by fitting a single mean, while 
Error SS is the variability left unexplained by each model.  Error SS is smaller for the 
ANOVA than for the regression because the separate means explain sightly more 
variation than the regression line (but it uses more parameters).   
 
Lack-of–Fit F-test 
 
We compare the fit of the separates means (ANOVA) to the fit of the regresion line, by 
comparing the residual SS from both models using the Extra sum of squares F-test: 
 

F =
( ) ( )

σ 2

/

SM

SMLRSMLR dfdfResRes   SS- SS −
 

 
Where LR and SM stands for linear regression and separate mean model. 
 
Insulating fluid example: 
 
 SS ResLR =180.07, SS ResSM = 173.75, dfLR =74, dfSM = 69, σ 2

SM =2.518 
 

F 5,69 = [(180.074 – 173.748) / (74 –69)] / 2.518 = 0.502, p = 0.78 
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This large p-value, corresponding to a F ≈ 1, provides no evidence of a lack-of –
fit of the simple linear model.  A small p-value would suggest that the ANOVA 
model fits better, or in other words that the variability between group means is not 
explained adequatedly by a simple linear regression model. 
 

In JMP, you get the lack of fit test both on the Fit Model platform and the Fit Y by X 
platform, as long as there are replicated Y’s at some levels of X’s. 
 
For the Insulation fluid data (7 Voltage treatments): 
 
Lack Of Fit 
Source DF Sum of Squares Mean Square F Ratio
Lack Of Fit 5 6.32592 1.26518 0.5024
Pure Error 69 173.74892 2.51810 Prob > F
Total Error 74 180.07484 0.7734
  Max RSq
  0.5307
 
Pure error is the SS for the ANOVA model (i.e. the best estimate of the population 
variance), whereas total error is the SS for the simple regression model.  The lack of fit 
test (above) assesses the null hypothesis: both models fit equally well, versus the 
alternative hypothesis: ANOVA fits better. 
  
A composite Analysis of variance table 
 
A composite ANOVA table can be used to sumarize results from the lack of fit test. 
 
The separate-means model (i parameters, here i = 7) is a generalization of the simple 
linear model (2 parameters), which in turn is a generalization of the equal-mean model (1 
parameter).  The reduction in SS obtained when fitting the separate-mean model instead 
of the equal-mean model (i.e. 196.477), can be decomposed in: 
 
1- The reduction in SS obtained when fitting a simple linear regression instead of an 

equal-mean model (190.151), and 
2- The reduction in SS obtained when a separate-means model is fitted instead of a 

linear regression model (196.477 – 190.151 = 6.326 = Lack of fit SS).   
 
Each of those components can be represented in a composite ANOVA table, which is the 
same table used to represent the separate means-model, except that the Between group SS 
(treatment SS) is decomposed into two components: 
 
1. One that represents the variability explained by the linear regression line (190.15) , 

and 
2. One that estimates the variability that arizes because the separate group means do not 

exactly fall on a straight line (the lack-of-fit component, i.e. 6.32). 
 
<<Fig. 8.9 Sleuth>> 
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R2:  The proportion of variation explained 
 

R2
 is the coefficient of determination, a measure of the percentage of the total response 

variation that is explained by the explanatory variable.  Thus, 
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The proportion (or %) of the total variation in Y that is explained by the fitted regression 
(or by any model) is a measure of the strength of the fitted relationship. 
 
In the insulating fluids example analysed with a linear regression, R2 = 100(370.2 – 180.1 
/ 370.2)% = 51.4 %. 
 
Thus, Fifty-one percent of the variation in log breackdown times was explained by the 
linear regression on voltage. 
 
R2 provides useful information to compare the fit of 2 models with equal numbers of 
parameters.  R2 alone should not be used to assess adequacy of the linear model because 
R2 can be large even when the linear model is not adequate (e.g., the response is not 
linear).  
 
Simple Linear regression or One-way ANOVA? 
 
When data are collected from groups that correspond to different levels of an explanatory 
variable (eg. insulation fluids), both one-way ANOVA and simple linear regression can 
be used for analysis. 
 
The choice between the 2 is easy: 
 
 If the simple linear regression fits, then it is preferred. 
 
When appropriate, regression is better than ANOVA because it: 
 

1. allows for interpolation 
2. provides more degrees of freedom for error estimation (thus small error MS and 

high power) 
3. gives smaller SE for estimates of mean responses (i.e., narower CI). 
 
<<Display 8.11 Sleuth>> 
 
4. provides a simpler model 
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In general, we seek the simplest model  --the one with the fewest parameters—that 
adequately fits the data.  This is called the principle of parsimony, or the Occam’s (or 
Ockham) razor principle. 


