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RNR/ ENTO 613 – Multiple Regression________________________________________ 
 
Simple Linear Regression goal: Quantify association between a response variable (Y) and a single 

explanatory variable (X) 
 
Multiple Linear regression Goal: Quantify association between a response variable (Y) and a series 

of explanatory variables (X1, X2, …Xn) 
 
Multiple regression analysis is an extension of simple linear regression and ANOVA.  It focuses on 
the mean response (Y) at each combination of the explanatory variables.  The explanatory variables 
can be either continuous or nominal (i.e. categorical).  
 
Terminology and symbols: (Meadowfoam example) 
 
< Display 9.2> 
 
Notation for multiple regression: 
 

μ {flowers | light, time}   
 
which reads as “the mean number of flowers, as a function of light intensity and timing.” 
 

With specific values for the explanatory variables we get: 
 
 μ {flowers | light = 300, time = 24} 
 
 which reads as “ the mean number of flowers when light intensity is 300 units and time is 24 

days prior to PFI (photoperiodic flower induction). 
  
Multiple Linear Regression Model 
 
Simple linear regression model assumes that a straight line describes the relationship between the 
mean response (Y) and X: 
 

  μ {Y | X} = Xββ 10
+  

 
Multiple regression extends that approach to cases with more than one explanatory variable: 
 
μ {Y | X1, X2} = XX 22110 βββ ++   (2 explanatory variables [X1 continuous; X2 
categorical]; parallel lines) 
μ {Y | X1, X2} = XXXX 21322110 ββββ +++  (2 explanatory variables [X1 and X2 as 
above] with interaction term; non-parallel lines) 
μ {Y | X1, X2} = XX 22110

loglog βββ ++  (2 explanatory variables [X1 and X2 as 
above] log transformed; parallel lines) 
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μ {Y | X1} = XX 2
12110 βββ ++   (1 explanatory variable [continuous] with quadratic term; 

non-monotonic association) 
 

 
All those models are linear regression models, because the regression coefficients 
( βββ n

,......,
21

) represent a linear relationship between a function of the explanatory variables 

(e.g. X 2
1 ) and the mean response Y. 

 
As before, Least-Squares are used to estimate the regression coefficients (β0, β1, β2… βn). 
 
The least-squares solution consists of the values β0, β1,… βn  for which the sum of squares of 
deviations of the observed Y-values from the corresponding values predicted by the fitted regression 
model is a minimum (i.e. the Error SS in the ANOVA table is minimum).  
 
An example: Effect of two Explanatory Variables without interaction 
 
 Y is the mean number of flowers produced by 10 plants 
 X1 is light intensity (6 levels between 150 and 900 units) 
 X2 is timing at which light intensity is changed from a basic value of 195 units.  X2 has 2 

levels: 24 days before photoperiod floral induction (PFI) or at PFI (0 day).  PFI is the time at 
which photoperiod is increased from 8 to 16 hrs of light per day to induce flowering. 

 
<<Display 9.2>>  
 
The following regression model can be seen as describing a plane:   
 
{ } timelighttimelightflowers βββμ

210
,| ++=  

 
β0 is the height of the plane when both light and time equal zero. 
β1 is the slope of the plane as a function of light for any fixed value of time 
β2 is the slope of the plane as a function of time for any fixed value of light 
 
<<Fig. 9.5 Sleuth>>  In 3-D 
 
But it is more easily visualized in 2-D.  
 
<<Fig. 9.8 Sleuth>>  In 2-D 
 
For a parallel line model (no interactions), the effect of an explanatory variable (continuous or 
nominal) is the change in mean response associated with a one-unit increase in that explanatory 
variable, while holding all other explanatory variables fixed.   
 
[With a significant interaction between light and time, the effect of light depends on the level of time; 
see below] 
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Interactions 
 
Two factors “interact” if the effect that one factor has on the mean response (Y) depends on the value 
of the other factor. 
 
Example:  Does the effect of light intensity on flower production depend on timing? 
 
 

Fl
ow

er
s/

pl
an

t

Light Intensity

24 d

0 d 24 d

0 d

NO INTERACTION INTERACTION

 
No interaction implies that the effect of light intensity is the same at the 2 levels of time.  The lines 
are parallel. The relationship is described by a parallel lines model (μ {Y | X1, X2} = 

XX 22110 βββ ++ ). 
 
An interaction implies that the effect of light depends on timing of the change in light intensity 
(time).  The lines are not parallel.  The relationship is described by a model with an interaction term 
(μ {Y | X1, X2} = XXXX 21322110 ββββ +++ ). 
 
<< Display 9.8>> 
 
The presence of a significant interaction in a regression model affects the interpretation of main 
effects (here light and time).  Those main effects can no longer be interpreted independently of each 
other. 
 
Indicator variables (or Dummy variables) to take into account nominal factors 
 
In the meadowfoam example, time is treated as a categorical variable with 2 levels (typical of 
ANOVA framework).  How do we deal with categorical variables in Multiple regression models? 
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The methods of regression analysis can be generalized to treat categorical explanatory variables with 
the use of Indicator or Dummy variables.  Dummy variables allow analyses of categorical variables 
by comparison of several regression equations originating from a single multiple regression model.  
 
In the flower production example, light can be treated as a continuous variable (simple linear 
regression framework; valid if mean responses are linear). 
 
The effect of a continuous variable is estimated by β (least squares method) 
 
To estimate the effect of categorical variables in the multiple regression framework, a binary 
indicator variable (also called Dummy variable) is created to represent the presence (coded as 1) or 
absence (coded as 0) of each level of the categorical variable. 
 
<<Display 9.7 >> 
 
Rule for coding indicator variables 
 
k-1 indicator variables are used to describe the set of levels of a particular nominal variable (a factor).  
These indicator variables are included as explanatory variables in the regression model.  The level 
corresponding to the indicator variable that is not included is called the reference level. 
 
The coefficient of an indicator variable is the difference between the mean response for the indicated 
category (= 1) and the mean response for the reference level (=0), at fixed values of the other 
explanatory variables. 
 
Example:  A parallel line model for the flower VS light / time problem. 
 
Light is treated as continuous variable 
Time is nominal (categorical with 2 levels). 
 
Because you code time as nominal, JMP defines a dummy variable to be 0 when time = 0 day prior to 
PFI and 1 when time = 24 days.  Let’s designate that dummy variable as day24. 
 
The single multiple regression model with the dummy variable day24 is: 
 
μ{flowers | light, time} =  β0 +β1 light +β2 day24 
 
This model, when treated by a computer program, yields the following 2 models, which are used to 
estimate β2: 
 
day24= 0: μ{flowers | light, time=0} = β0 +β1 light       (reference level) 
day24=1: μ{flowers | light, time=1} = (β0 +β2) +β1 light  
 
Only the Y’s corresponding to day24=0 are used to calculate μ{flowers | light, time=0}; only the 
observations matching day24=1 are used to calculate μ{flowers | light, time=1}. The difference 
between the 2 means provides an estimate of β2 . 
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The coefficient corresponding to the effect of time is thus estimated as: 
 

{ } { }024,| =−== daylightflowers1day24 light,|flowers effect time μμ  
  = [β0 +β1 light +β2 ] – [β0 +β1 light ] 
  = β2   (where  β2 is the difference between 2 means) 
 
Thus, the multiple regression procedure with the dummy variable day24 incorporates the two 
parallel line models within a single model: μ{flowers | light, time} = β0 +β1 light +β2 day24 
 

a) This multiple regression model states that the mean number of flowers is a straight- line 
function of light intensity for both levels of timing, the slope of the line being β1. 

b) The intercept for the line when day24=0 is β0. 
c) The intercept for the line when day24 =1 is β0 + β2. 

 
The coefficient of the indicator variable, β2, is the amount by which the mean number of flowers 
with timing =24 days exceeds that with timing = 0 day, after accounting for (i.e. averaging) the effect 
of light intensity differences. 
 
<<Fig 9.8 Sleuth>> 
 
Analysis of the parallel line model in JMP: flower VS light and timing  
 
Light is continuous 
Time is nominal 
 
 
 
 
 
 
 
 
         
 
 
 
 
 
 
 
Sleuth reports a coefficient of 12.2 for the effect of Time, but JMP a coefficient of – 6.1.  Why? 
 
1- The sign of the coefficient for a categorical variable depends on which reference level is chosen in 
the analysis.  Sleuth used time = 0 as the reference, but JMP used time= 24.  

Response: Fl ower s

Summar y of  Fi t

RSquar e
RSquar e Adj
Root  Mean Square Er ror
Mean of  Response
Observat i ons (or  Sum Wgt s)

0. 799159
0. 780031
6. 441073
 56. 1375

      2

Lack of  Fi t

Source
Lack of  Fi t
Pur e Er ror
Tot al  Er ror

DF
    9

   12
   21

Sum of  Squares
 215. 31077
 655. 92510
 871. 23588

Mean Squar e
 23. 9234
 54. 6604

F Rat i o
  0. 4377
Pr ob>F

  0. 8894
Max RSq

0. 8488

Par amet er  Est i mat es

Ter m
I nt er cept
Ti me[ 1-2]
I nt ensi t y

Est i mat e
   77. 385

- 6. 079166
- 0. 040471

St d Er ror
2. 998156
1. 314779
0. 005132

t  Rat i o
 25. 81
 - 4. 62
 - 7. 89

Prob>| t |
<. 0001
0. 0001
<. 0001
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2- JMP does not report and test the effect of a categorical variable by taking the difference between a 
given level and the reference level.  
 
The parameters estimated for each level are obtained by taking the difference between the mean 
response at a given level and the average of the response at all levels of the variable.   
 
The test on the effect of time labeled Time [1-2] compares the first level of time to the mean of the 2 
levels of time.  We obtain an estimate for time of - 6.1, because level 1 (change at 0 day) is contrasted 
to the mean of the responses obtained at the 2 light levels (so it is ½ smaller than 12.2, the difference 
between the response at time=24 and time =0). 
 
Analysis of the flower VS light and timing problem: are the lines parallel? 
 
In multiple regression, an explanatory variable for an interaction is constructed as the product of the 
2 explanatory variables that are thought to interact. 
 
The model with interaction can be written as: 
 
μ{flowers | light, day24} =  β0 +β1 light +β2 day24 + β3 (light x day24) 
 
This model yields the following 2 models, which are used to estimate the mean response at the 2 
values of day24: 
 
day24= 0: μ{flowers | light, time=0} = β0 +β1 light        (reference level) 
day24=1: μ{flowers | light, time=1} = (β0 +β2) + (β1 + β3 ) light 
 
 
The single multiple regression model states that both the intercept and slope in the regression of 
flowers on light depend on timing (i.e. day24):   
 
At time = 0, the intercept is β0 and the slope β1. 
At time =24, the intercept is β0 +β2 and the slope β1 + β3.  This model allows both for different slopes 
and intercepts.   
 

<<Display 9.8>> 
 
Analysis of the interaction model flower VS light and timing in JMP 
 

 

Model
Error
C. Total

Source
    3
   20
   23

DF
 3467.2765
  870.6598
 4337.9362

Sum of Squares
 1155.76
   43.53

Mean Square
 26.5490

F Ratio

  <.0001
Prob > F

Analysis of Variance
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Effect Tests 
Source Nparm DF Sum of Squares F Ratio Prob > F  
Time 1 1 886.9504 20.3742 0.0002  
Intensity 1 1 2579.7500 59.2597 <.0001  
time*intensity 1 1 0.5760 0.0132 0.9096  
 
Parameter Estimates 
Term  Estimate Std Error t Ratio Prob>|t|
Intercept  77.385 3.07118 25.20 <.0001
time[1]  -6.079167 1.346802 -4.51 0.0002
Intensity  -0.040471 0.005257 -7.70 <.0001
time[1]*(intensity-525)  -0.000605 0.005257 -0.12 0.9096

 
Because there is no evidence that the coefficient for the interaction (β3 ) is different from zero, we 
conclude that the effect of light intensity does not depend on the timing of change in light intensity 
(two-sided p-value = 0.91, from a t-test for interaction, 20 degrees of freedom).   
 
We conclude that the parallel line model describes well the relationship between number of flowers 
and light intensity and timing. 
 
Fitting your own model with Dummy variables 
 
Letting JMP choose the reference level is not always practical; also, comparing the effect of each 
level of a categorical variable is not easy when there are more than 2 levels (JMP uses the difference 
between each level and the mean of all levels). 
 
You can code your own Dummy variables directly in the data table, which allows you to choose your 
reference level.   
 
<Display 9.7> 
 
For example, a separate-means model (ANOVA) could be fitted to describe the effect of light by 
using 5 Dummy variables for the 6 levels of light.  (Alternatively you could specify light as a nominal 
variable in JMP.) 
 
Example:  In the flower VS light and timing problem, you can create one new column (time has 2 
levels) for a Dummy variable day24, that takes a value of 0 if time = 0 and 1 if time =24.  Using that 
column to estimate the effect of timing, you get: 
 
 
 
 
 
 
 
 

Par amet er  Est i mat es

Ter m
I nt er cept
I nt ensi t y
Day24

Est i mat e
71. 305834
- 0. 040471
12. 158333

St d Er ror
3. 273772
0. 005132
2. 629557

t  Rat i o
 21. 78
 - 7. 89
  4. 62

Prob>| t |
<. 0001
<. 0001
0. 0001
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Here the effect of the categorical variable time is estimated by taking the difference between the level 
24 days and the reference level 0 day.  
 
We conclude that increasing light intensity decreased the mean number of flowers by an estimated 
4.0 flowers per plant per 100 μmol / m2 / sec (t = - 7.89, df = 21, P < 0.0001), after accounting for the 
effect of timing.  Beginning the light treatment 24 days prior to PFI increased mean number of 
flowers by 12.2 flower per plant (t = 4.62, df = 21, P = 0.0001), after accounting for variation in light 
intensity. 
 
Performing the equivalent of a t-test with a dummy variable and regression 
 
Example:  Compare height of 2 populations of plants, one which received only water (n = 10) and 

the other a fertilizer (n=8). 
 
Recall we compared heights between populations with a 2-sample t-test, which yielded: t16 = 2.99, P= 
0.0087. 
 
Identically, we could have created an indicator variable to identify the 2 treatment levels and used 
linear regression. 
 
Say we created an indicator variable DUMMY coded as: 
 
 0 for the control group  
 1 for the fertilizer group  
 
We then perform the simple linear regression as:   
 

Height = β0 +β1 DUMMY 
 

For DUMMY = 0, the predicted mean height is :   height = β0       
(β0 is the average of the control group, i.e. the response when fertilizer = 0) 
 
For DUMMY = 1, the predicted mean height is:   height = β0 +β1    
(β1 is the difference between the average of the treatment and control group) 
 
The test for β1 (the coefficient of DUMMY) yields t = 2.99, P = 0.0087, with β0 = 51.91 and β1 = 
4.64. 
 
The difference in mean response due to fertilizer is 4.64 (control = 51.91; fertilizer = 56.55), which is 
the difference between the mean response for each level of the factor (i.e. yy and

21
). 

 
Thus, the coefficient of the indicator variable (β1) is the difference between the mean response for 
the indicated category (=1) and the mean for the reference category (=0). 
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t-test     Regression with indicator 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Polynomial Regressions 
 
When the change in the mean of the response variable as a function of the explanatory variable is not 
monotonic, the straight-line model is not adequate.  By including polynomial terms based on the 
original explanatory variables, regression can be developed for relationships that exhibit curvature. 

 
Example:  Develop a model to describe the relationship between corn yield (bu/ac) and 
amount of rainfall (inches) in 6 U.S. states between 1890 and 1927. 

 
Linear Fit:  YIELD = 23.552 + 0.775 RAINFALL 

Parameter estimates: 
 

Gr owt h By Dummy

47. 5

50. 0

52. 5

55. 0

57. 5

60. 0

62. 5

- 0. 25 . 00 . 25 . 50 . 75 1. 00 1. 25
Dummy

Li near  Fi t

Li near  Fi t

Growt h = 51. 91 + 4. 64 Dummy

Summar y of  Fi t

RSquar e
RSquar e Adj
Root  Mean Squar e Er ror
Mean of  Response
Obser vat i ons ( or  Sum Wgt s)

0. 358223
0. 318112
3. 273272
53. 97222

      18

Anal ysi s of  Var i ance

Source
Model
Er ror
C Tot al

DF
    1

   16
   17

Sum of  Squares
  95. 68711

 171. 42900
 267. 11611

Mean Squar e
 95. 6871
 10. 7143

F Rat i o
  8. 9308
Pr ob>F

  0. 0087

Paramet er  Est i mat es

Ter m
I nt er cept
Dummy

Est i mat e
    51. 91
     4. 64

St d Er ror
  1. 0351

1. 552649

t  Rat i o
 50. 15
  2. 99

Prob>| t |
<. 0001
0. 0087

Par amet er  Est i mat es

Ter m
I nt er cept
r ai nf al l

Est i mat e
23. 552102
0. 7755493

St d Er ror
3. 236462
0. 293864

t  Rat i o
  7. 28
  2. 64

Prob>| t |
<. 0001
0. 0122

47. 5

50. 0

52. 5

55. 0

57. 5

60. 0

62. 5

C F

t reat ment

t - Test

Est i mat e
St d Er ror
Lower  95%
Upper  95%

Di f f er ence
- 4. 64000
 1. 55265
- 7. 93145
- 1. 34855

t - Test
  - 2. 988

DF
   16

Prob>| t |
  0. 0087

Assumi ng equal  var i ances

Means f or  Oneway Anova

Level
C
F

Number
   10
    8

Mean
 51. 9100
 56. 5500

St d Er ror
 1. 0351
 1. 1573

St d Er ror  uses a pool ed est i mat e of  er ror  var i ance
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R2= 0.16 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Add quadratic term (i.e. rainfall 2) to account for curvature (produce a new column RAINFALL X 
RAINFALL with CALCULATOR in JMP; or use FIT POLYNOMIAL in the Fit Y by X platform): 
 

Polynomial Fit degree =2: 
YIELD = -5.014 + 6.004 RAINFALL – 0.229 RAINFALL 2  (from Fit Model Platform) 
R2 = 0.26 
Parameter Estimates  
Term  Estimate Std Error t Ratio Prob>|t|
Intercept  -5.014664 11.44158 -0.44 0.6639
RAINFALL  6.004283 2.03895 2.94 0.0057
Rain2  -0.229364 0.088635 -2.59 0.0140
 
    Polynomial Fit degree =2: 
YIELD = 21.66 + 1.057 RAINFALL – 0.229 (RAINFALL – 10.784)2 (from Fit Y by X Platform) 
R2 = 0.26 
Parameter Estimates 
Term  Estimate Std Error t Ratio Prob>|t|
Intercept  21.660175 3.094868 7.00 <.0001
RAINFALL  1.0572654 0.293956 3.60 0.0010
(RAINFALL-10.7842)^2  -0.229364 0.088635 -2.59 0.0140
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Interpretation:  The linear model seems inadequate.  The quadratic model describes the curvature in 
the relationship between rainfall and corn yield that was evident is the scatterplot and patterns of the 
residuals.   
 
With a significant quadratic term in the model, corn yield depends on the specific value taken by 
rainfall.  The mean yield increases up to about 14 inches of rain per summer, then corn yield declines 
with additional amount of rain.  It seems that there is an optimum amount of rain. 
 
In fact, because β 2

is negative (i.e. the relationship is concave-down), the value of X that maximizes 

{ } XXXY 2

210
| βββμ ++=  is: 

 
ββ 2 21max −=X   (use β 1

 and β 2
from the Fit Model platform to solve for the optimum). 

 
For a positive β 2

(relationship concave-up), the value above would minimize the mean response (see 
Sleuth p. 290). 
 
Interpretation depends on other explanatory variables included in the model 
 
Example: Determine the association between weight (Y), height (X1) and age (X2) in 12 children. 
 

Multiple Regression:  weight = β0 + β1 height + β2 age 
 

Term Estimate Std Err t Ratio Prob>|t| 
Intercept 6.55 10.94 0.60 0.564 
Height 0.72 0.26 2.77 0.021 
Age 2.05 0.94 2.19 0.056 
 
A one-unit increase in height resulted in an estimated 0.72 unit increase in mean weight (t = 2.77, P= 
0.021), independently of the effect of age.  There is also evidence that a one-unit increase in age was 
associated with an increase in weight of 2.05 units (t = 2.19, P = 0.056), after accounting for the 
effect of height. 
 
There is no evidence that β0 (intercept) is different from zero (as expected, the mean weight of 
children is zero when both height and age are equal to zero). 
 
Let’s re-analyze the data but this time only considering the relationship between height and weight. 
 

Simple linear regression:  weight = β0 + β1 height 
 

Term Estimate Std Err t Ratio Prob>|t| 
Intercept 6.19 12.84 0.48 0.64 
Height 1.07 0.24 4.44 0.0013 
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The coefficient associated with height is larger than before.  This is because taller children also tend 
to be older.  The coefficient of height in this reduced model contains the effect of height on weight 
and in addition reflects the association between age and weight. 
 
In the model Weight = β0 + β1 height + β2 age, the coefficient of height reflects the association 
between height and weight after accounting for the effect of age.  In other words, the coefficient of 
height describes the association between height and weight for children of the same age. 
 
A strategy for data analysis (with few explanatory variables) 
 
Because values of the regression coefficients change when different effects are included in the 
regression model, one should not think that a single model will be better than all others in describing 
the data (especially with complex models). 
 
There is a general strategy that can help developing an inferential model. 
 
After considering the questions of interests and choosing a design: 
 
1. Explore the data with graphical tools: consider transformations; check outliers. 
2. Formulate an inferential model by wording questions in term of model parameters. 
3. Check the model fit. a) if appropriate, fit a richer model, i.e. one with interactions or curvature 

   b) examine residuals and check for nonconstant variance and outliers 
   c) drop unnecessary extra terms 

4. Infer answers to the questions of interest using appropriate tools, such as confidence intervals and 
hypothesis tests. 

5. Communicate results in language of ecology, not statistics. 
 
Example.  What lifestyles allow evolution of large brains in mammals? 
 
<Display 9.4> 
 
a) Assuming that brains are energetically costly to produce, one hypothesis is that brain size in 

mammals is limited by the rate at which mothers can provide nutrition to their offspring.  If this is 
true, we would expect a negative association between brain weight and litter size. 

 
b) Another reasonable assumption is that producing larger brains require more time than smaller 

ones.  Thus one would expect brain weight to be associated positively with gestation period. 
 
c) Because body size is related to brain weight, metabolic rate, and gestation length through 

allometric relationships, the two hypotheses above should be investigated after accounting for 
variation in body weight.   

 
Finding the expected relationships would provide support for the hypotheses that production of large 
brains: 
 
1) requires energy efficiency from mothers (could it be related to diet quality?) 
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2) may require time (could it be disfavored in “r-selected” species and favored in “K-selected” 
species?). 

 
response variable:    brain weight (g) 
explanatory variables:  body weight (kg), gestation length (days), litter size 
 
Which, if any, variables are associated with brain size, after accounting for variation in body size? 
 
Not transformed     Log transformed 
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Summar y of  Fi t
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Mean of  Response
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0. 952185
0. 474755
3. 864575

      96

Paramet er  Est i mat es

Ter m
I nt er cept
l n( l i t t er )
l n( gest )
l n( body)

Est i mat e
0. 8548219
- 0. 310071
0. 4179421
0. 5750714

St d Er ror
0. 661672
0. 115927
0. 140782
0. 032588

t  Rat i o
  1. 29
 - 2. 67
  2. 97

 17. 65

Pr ob>| t |
0. 1996
0. 0089
0. 0038
<. 0001

- 1. 0

- 0. 5

0. 0

0. 5

1. 0

1. 5

- 1 0 1 2 3 4 5 6 7 8 9
l n(br ai n) Pr edi ct ed 



 97

There is evidence that brain weight is positively associated with gestation length (two-sided p-value = 
0.0038 for a test that the slope is zero) after accounting for the effect of body weight and litter size.  
Brain weight is also negatively associated with litter size (two-sided p-value = 0.0089) after 
accounting for body weight and gestation period. 
 
Although there are likely cluster effects due to taxonomic relatedness that may strongly influence 
statistical inferences, this analysis provides some evidence in favor of the ideas that rate at which 
mothers provide nutrition to their offspring or gestation length could limit the evolution of large 
brains in mammals. 
 
 


