High-Resolution Climate Monitoring on a Mountain Island: The Saguaro National Park Pilot Study

Mike Crimmins Department of Geography and Regional Development The University of Arizona Tucson, AZ

Project Background

•NPS-Sonoran Desert Network I&M exploring climate monitoring strategies as part of the Natural Resource Challenge and Park Vital Signs Monitoring

•Ecosystem Monitoring Framework for the Sonoran Desert recognizes the need for climate monitoring and has assessed needs through an expert working group

•Are existing park-level climate monitoring systems effective for natural resource management activities?

•Saguaro National Park excellent location for pilot study (diversity of management issues, steep environmental gradients, protected area)

Project Design

- Evaluate how climate information is used by different users at Saguaro National Park (meetings, informal interviews)
- Catalog all different research and management activities at park; climate data used or needed?
- Work with park staff to design and develop a temporary climate monitoring network (Which variables? Where? Why?)
- Develop climate data mining and visualization tools with guidance from park staff
- Determine how data from new network is being used (formal surveys, interviews)
- Evaluate utility of network for long-term monitoring

Climate Information and Park Level Management

 Hydrological monitoring Wildfire management Wildlife studies Invasive species management Air quality management Education

Monitoring Strategy

- Coupling high-resolution climate monitoring with ecological monitoring
 - Datalogging weather stations (10 min sampling)
 - Vegetation sampling (monthly to seasonally)
- Broad approach many variables at many sites
- Coordination with other natural resource management activities and research projects

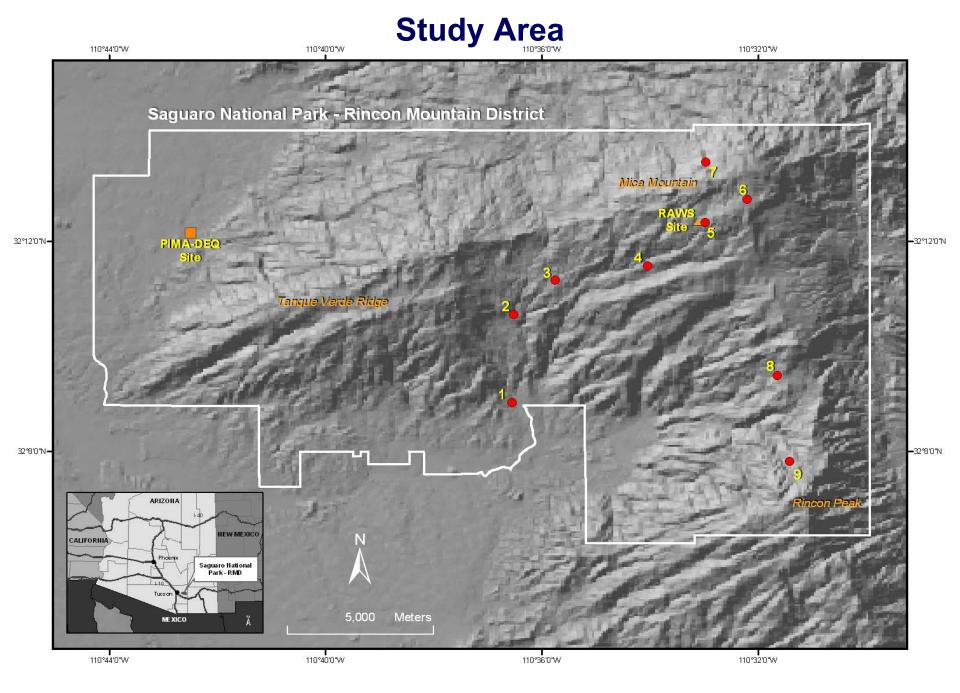
Weather Station Specifications

- Wind speed/direction (10 minute average speed, gust)
- Rainfall (0.01 tip)
- Air Temperature
- Relative Humidity
- Atmospheric Pressure
- Solar Radiation (300-1100 nm)
- Photosynthetically Active Radiation (400-700 nm)
- Soil Moisture (10 cm depth)
- Soil Temperature (10 cm depth)

Vegetation Sampling

Three height classes (<0.5m,0.5-2m,>2m)
Monthly to seasonal sampling

- Modular plots (4,10m x 10m)
- Percent canopy cover



Additional Site Monitoring

- Specialized meteorological measurements
 - shaded surface temperature at ground level
 - soil moisture profiling
- Repeat Photography
- Dendrometers
- Snow

Monitoring Sites

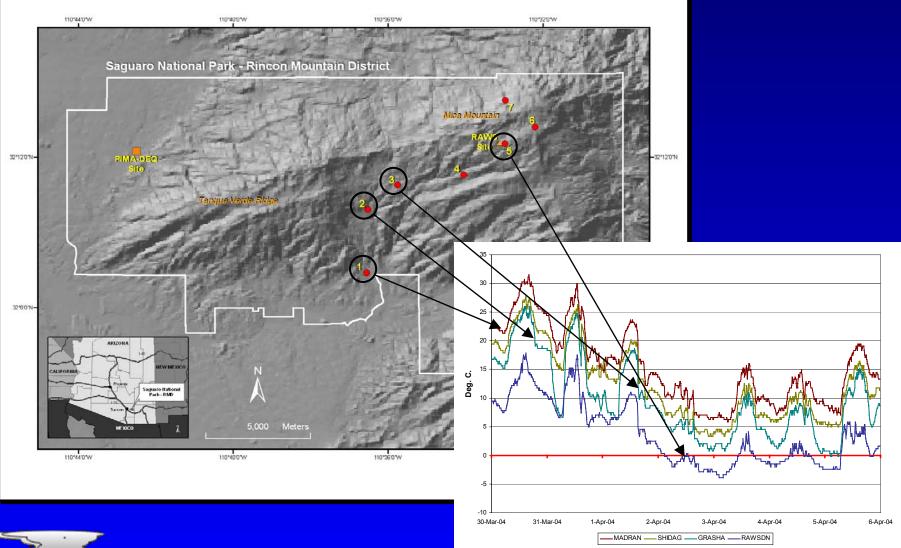
Station	Installation	Elevation	Aspect	Ecotone/Community Type
1 - MADRAN	September 2003	1052 m (3450 ft.)	S	Upper Sonoran Desert Scrub
2 - SHIDAG	December 2003	1402 m (4599 ft.)	S	Madrean Evergreen Woodland/Chapparal
3 - GRASHA	February 2004	1607 m (5500 ft.)	Level	Madrean Evergreen Woodland
4 - MANZAN	May 2004	1980 m (6500 ft.)	S	Pinyon/Juniper Woodland
5 - RAWSDN	February 2004	2417 m (7929 ft.)	S	Ponderosa Pine Forest
6 - MICMEA	March 2004	2325 m (7627 ft.)	Level	Ponderosa Pine Forest/Open Meadow
7 - NORSLO	March 2004	2430 m (7972 ft.)	Ν	Mixed Conifer Forest
8 – HAPVAL	May 2004	1923 m (6309 ft.)	W	Pinyon/Juniper Woodland
9 - RINPEA	May 2004	2166 m (7106 ft.)	N	Mixed Conifer Forest

Madrona Ranger Station (1052m), Upper Sonoran Desert Scrub

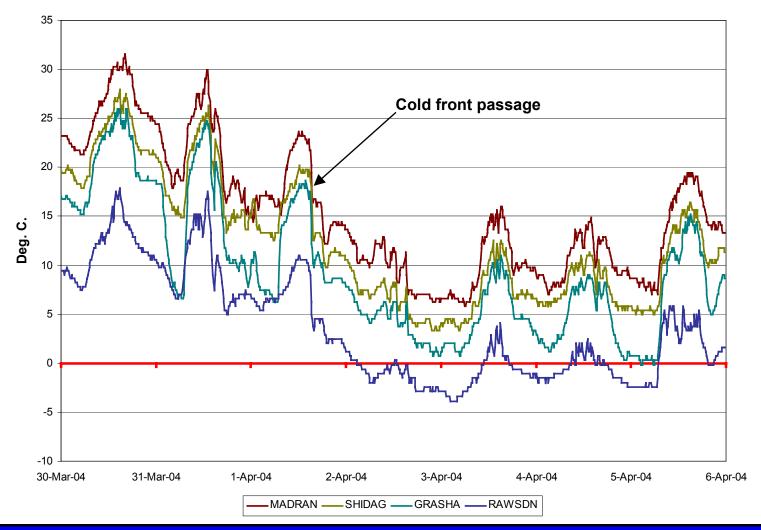
Along Madrona trail (1402m), Madrean evergreen woodland/chapparal

Mica Meadow (2325m), Open meadow/Ponderosa pine forest

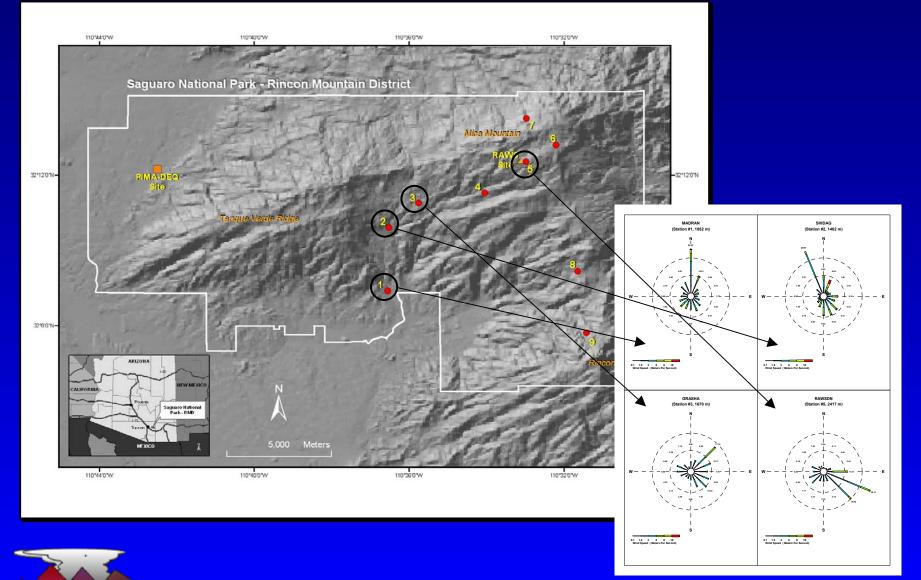
North slope of Mica Mountain (2430m), Post-fire/mixed conifer



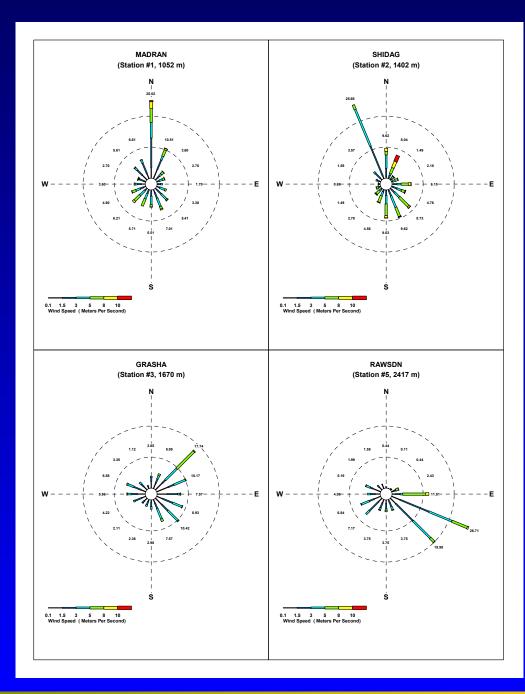
RAWS comparison site (1052m), open meadow/Ponderosa pine forest



Preliminary Data: Air Temperature



Winter Storm, Late March 2004


Preliminary Data: Temperature

7-day Wind Climatology March 30-April 6, 2004

•Complex wind flows across study area

MADRAN, SHIDAG, & GRASHA all dominated by drainage flows
RAWSDN at top of drainage, but different wind regime
Important to wildfire and air quality management (wildfire suppression, prescribed burns)

Future Steps

- Continue data collection and site maintenance through Fall 2005(?)
- Development of Java based data mining and visualization tool
- Pursue funding to establish sites for long-term ecological research
 - Upgrade weather stations for real-time data access
 - Establish base funding for field technicians dedicated to site maintenance and data collection
- Develop outreach component

Acknowledgements

Nina Chambers, Sonoran Institute Andy Hubbard, National Park Service – I&M Theresa Mau-Crimmins, National Park Service – I&M Jeff McGovern, National Park Service – I&M Kristen Beaupre', National Park Service – I&M Amy Tendick, RNR-University of Arizona Pepe Iniguez, LTRR-University of Arizona Chris Baisan, LTRR-University of Arizona Dennis Crimmins, MMI Jim Nunnold, MMI

