Native Fish Conservation & Climate Variability in Southeastern Arizona

Doug Duncan and Gregg Garfin

US Fish & Wildlife Service and University of Arizona

INTRODUCTION

FISH

CLIMATE – Drought Climate change

INTERSECTION OF CLIMATE & FISH CONSERVATION

WHAT'S NEXT?

Plan

Protect

Adapt

Salvage

Monitor

Research

Native fish sites

Unsuitable

- nonnative fish
- landowner resistance

Unusable

- sport fishing
- degraded water quality
- other rare aquatic vertebrates

FISH STATUS

- 21 species in southeastern Arizona
- 16 still occur in the area
- 4 are extirpated
- 1 is extinct

- 13 species listed under the Endangered Species Act
 - 9 are listed as endangered
 - -4 as threatened

OTHER NATIVE AQUATIC SPECIES

- 3 ranid frogs
 - -lowland leopard
 - -Chiricahua leopard
 - Tarahumara

1 salamander

several garter snake species

THREATS

- nonindigenous species
- habitat loss
- reduction in habitat quality
 - Habitat destruction and the introduction of nonindigenous species are responsible for the decline of 98% of North American fishes listed as endangered, threatened, or of special concern

DROUGHT & CLIMATE CHANGE

DROUGHT

- Meteorological drought:
 - -the departure of precipitation from the norm
 - -the duration of the dry period
 - -hydrological
 - -agricultural

seasonal predictions, for 3-month seasons,
 2 weeks in advance

 predictions based on statistical & dynamical climate models & insights from past climate

 science does not support multi-year or decadal drought predictions

 instrumental & paleoclimate records indicate the SW has a history of multi-year and multi-decadal drought

- multi-decadal drought is controlled by Pacific Ocean-atmosphere interactions, which effect winter precipitation
- persistent Atlantic Ocean circulation is theorized to have a role in multi-decadal drought in the Southwest- particularly summer precipitation
- Given multi-decade "regimes" of ocean circulation, and the severity and persistence of the present multi-year drought, there is a fair likelihood that this drought will persist for many more years

U.S. Drought Monitor

April 3, 2007

The Drought Monitor focuses on broad-scale conditions. Local conditions may vary. See accompanying text summary for forecast statements.

http://drought.unl.edu/dm

Released Thursday, April 5, 2007 Author: Thomas Heddinghaus, CPC/NOAA

Figure 4b. Arizona long-term drought status for February 2007.

Source: CLIMAS & NRCS

CLIMATE CHANGE

- climate change scenarios are less certain than drought
- virtually all climate change scenarios predict that the American southwest will get warmer during the 21st century
- precipitation predictions show a greater range of possibilities, depending on the model and emissions scenario
- to maintain the present water balance with warmer temperatures, precipitation will need to increase to keep pace with increased evaporation & transpiration

CLIMATE CHANGE

- climate change scenarios are less certain than drought
- virtually all climate change scenarios predict that the American southwest will get warmer during the 21st century
- precipitation predictions show a greater range of possibilities, depending on the model and emissions scenario
- to maintain the present water balance with warmer temperatures, precipitation would need to increase to keep pace with increased evaporation & transpiration

KEY PROJECTIONS:

- θ decreased snowpack > rain vs. snow, snowpack accumulation could be shorter, & snowpacks could be smaller
 - θ ironically, due to changes in snow-precipitation characteristics, runoff may decrease even if total precipitation increases
- θ earlier snowmelt > minimum winter & spring temperatures could melt snowpacks sooner, causing peak water flows to occur much sooner than the historical spring & summer peaks
- enhanced hydrologic cycle in a warmer world an enhanced hydrologic cycle is expected; flood extremes could be more common causing larger floods; droughts may be more intense, frequent, & longer-lasting

KEY PROJECTIONS:

θ **Precipitation**: is likely to change in amount and seasonality

θ Runoff: probably will be less

θ Less water for in streams -

IMPACTS

- Drought and climate change will:
 - -impact watersheds
 - will impact how ecosystems and watersheds function
 - these changes will cause a cascade of ecosystem changes
 - be hard to predict
 - are likely to occur non-linearly
 - Interrelated and interdependent

SYR - FIGURE 8-1

INTERSECTION OF CLIMATE & FISH

- drought & climate change, plus historical & continuing threats, will make native fish conservation in SE AZ even more difficult
- The impact of site desiccation is obvious
 - Less obvious effects can occur with drought & a warmer climate. Sites with reduced streamflow, or ponds or pools with low water could become fishless from reduced DO
- We have seen this occur at important natural Gila topminnow sites

Natural resource managers should be informed about climate variability

- Natural resource managers should be informed about climate variability
- Constructive dialog regarding native fish conservation needs, & drought & climate change

- Natural resource managers should be informed about climate variability
- Constructive dialog regarding native fish conservation needs & drought & climate change should occur
- Conservation planning should address climate variability through adaptive management

- Natural resource managers should be informed about climate variability
- Constructive dialog regarding native fish conservation needs & drought & climate change should occur
- Conservation planning should address climate variability through adaptive management
- Complete and implement fish salvage protocol

- Natural resource managers should be informed about climate variability
- Constructive dialog regarding native fish conservation needs
 & drought & climate change should occur
- Conservation planning should address climate variability through adaptive management
- Complete and implement fish salvage protocol
- Important fish populations should be replicated
 - Genetic information crucial in determining important populations

- agencies should begin work on identifying & creating potential replication sites
 - captive and wild

monitor important aquatic sites & fish populations

- monitor important aquatic sites & fish populations
 - expanded monitoring programs are essential to enhancing drought preparedness for fish conservation

- monitor important aquatic sites & fish populations
- expanded monitoring programs are essential to enhancing drought preparedness for fish conservation
- research on specific impacts of climate variability in southeastern Arizona

FINALLY

- uncertainty requires flexibility & adaptive management
 - agencies do not have a good track record of effectively implementing adaptive management, but the conservation of native fish and other aquatic vertebrates requires it

QUESTIONS?

For additional information

Doug: 520-670-6150 x236; <u>Doug Duncan@fws.gov</u>; 201 N. Bonita, Suite 141, Tucson, AZ 85745

Gregg: 520-622-9016; gmgarfin@u.arizona.edu, 715 N. Park Ave, The University of Arizona, Tucson, AZ 85721

FWS Arizona Office: http://www.fws.gov/arizonaes

CLIMAS: http://www.ispe.arizona.edu/climas/