Climate Impacts and Water Sources in the Riparian Zone

James Hogan

NSF STC for Sustainability of Semi-Arid Hydrology and Riparian Areas (SAHRA) Department of Hydrology and Water Resources College of Engineering & Mines, University of Arizona

Overview

Riparian Water Sources

- Basin groundwater
- Flood driven bank storage and riparian aquifer recharge
- Human related sources agricultural returns and WWTP
- Climate Change and Variability
 - Seasonality of flooding winter vs summer vs managed
- Controls on Flood Recharge
 - Geology scale of river / scale of basin aquifer system

2

- Hydrologic status gaining vs losing
- Contrasting Examples
 - San Pedro
 - Rio Grande
- Management Implications

Acknowledgements

Funding

Research Partnerships

Stakeholders/ Additional Support

SAHRA Riparian Water Sources

SAHRA Riparian Water Sources

Fundamental control Ratio of basin groundwater flux : flood runoff volume

Controls on this ratio Seasonality of flooding - winter vs summer Runoff volumes - upstream area/flood generation Basin recharge - size of basin / aquifer character Human alteration - GW pumping / WWTP discharge changes in runoff Two contrasting examples San Pedro - small basin, monsoon flood recharge, moderate basin recharge, "natural"

Hueco Bolson/Rio Grande – very large basin, snowmelt dominated, very little basin recharge, "managed" 5

SAHRA Upper San Pedro Basin

SAHRA Condition Class Model

Stromberg et al. 2006

SAHRA Riparian Water Source

- Isotopes of water natural tracer of source
- Riparian wells span range between end members
- Baseflow skewed toward monsoon runoff
- Quantify % using simple mixing model
- Uncertainty associated with runoff end member

SAHRA Riparian Water Sources

- Baseflow >50% monsoon runoff regardless of season
- Riparian Groundwater relates to condition class
- Control on this? Gaining vs Losing

Gaining vs Losing

Basin Groundwater in Riparian Wells

SAHRA Seasonal Changes?

Data from Pool and Coes, 1999

Water Sources

Rio Grande water distinct from basin recharge - Snowmelt southern Rocky Mountains Reservoir development imprints and evaporation signal - Trace pre / post development groundwater

13

El Paso Water Utility has recently drilled a number of multilevel test wells along the Rio Grande

18A

81

410

422

82

87

83 417

414

421

20

413

407

84

406A

85

88

412A

415

403

404A

405A

14A

SP1

86

10A

Groundwater Profile

15

Hueco GW Model

USGS Model Grid for Hueco Bolson

Update to include river recharge

From Bill Hutchison - EPWU

Hueco GW Model

1903 Flow

River recharge for Juarez!!

17

From Bill Hutchison - EPWU

Hueco GW Model

1996 Flow

Juarez recharge?

From Bill Hutchison - EPWU

SAHRA Management Implications

- Evaluate riparian water sources and the climate "sensitivity" of these sources
- Need to worry not just about impacts of groundwater pumping, but also about potential changes to flood runoff
- Groundwater models used for riparian management need to include local riparian recharge and ideally should be calibrated using isotopic data
- Isotopes are a useful tool for analyzing changes in riparian water sources; changes in water chemistry may manifest before changes in baseflow. Thus, monitoring changes in riparian groundwater and baseflow chemistry can be an early indicator for changes in sources

Climate Sensitivity

Flood Frequency

 Table 3. Sensitivity Matrix for Woody Riparian Vegetation

 Frequency of Seasonal Flooding

more

		riequency of Seasonar robuing						
		Hiah	Moderate	Low				
	High/stable (basin GW)	 Stable established 	 Stable established 	 Stable established 				
th and water source		populations, low risk to	populations, moderate risk	populations, recruitment				
		recruitment	to recruitment at high risk					
		 Low sensitivity to 	 Low to moderate 	Moderate sensitivity to				
		climate change	sensitivity to climate	climate change				
	Moderate (mixed)	 Moderate risk to 	 Moderate risk to 	 High risk to 				
		established populations,	established populations	established populations				
		no risk to recruitment	and recruitment	and recruitment				
deb		 Low sensitivity to 	 Moderate sensitivity to High sensitivity t 					
ter		climate change	climate change	climate change				
Groundwa	Jeep recahrge)	 Moderate to high risk 	• High risk to populations,	 Transition to unland 				
		to populations, no risk to	moderate risk to	very likely				
		recruitment	recruitment					
] poc	Moderate sensitivity to	 High sensitivity to 	 High sensitivity to 				
	(flc	climate change	climate change	climate change				

less

more

Basin GW

SAHRA Basin GW Budgets / Models

USGS Albuquerque Basin Study

Plummer, L.N., et al., 2004, Hydrochemical tracers in the Middle Rio Grande Basin, USA: 1. Conceptualization of groundwater flow, *Hydrogeol. J.*

SAHRA Basin GW Budgets / Models

Rio Grande Water ~10 km wide ~500 m deep

Sanford, W. E. et al., 2004, Hydrochemical tracers in the Middle Rio Grande Basin, USA: 2. Calibration of a groundwater model, *Hydrogeol. J.*,

SAHRA Basin GW Budgets / Models /

Region	Kernodle et al. (1995)	Tiedeman et al. (1998)	Anderholm (2001)	McAda and Barroll (2002)	This study
Jemez Mountains	0.56	0.27	N/A	0.58	0.08
Western boundary	0.18	0.18	N/A	0.07	0.06
Southwest boundary	0.30	0.09	N/A	0.03	0.17
San Juan Basin	0.05	0.05	N/A	0.04	0.27
Hagan/Espanola Basin	0.21	0.49	N/A	0.55	0.03
Northeast rivers	0.32	0.30	N/A	0.21	0.18
Tijeras Arroyo	0.41	0.41	0.07	0.03	0.00
Abo Arroyo	0.62	0.60	0.05	0.05	0.04
Rio Puerco	0.23	0.12	N/A	0.04	0.14
Jemez River	0.48	0.48	N/A	0.59	0.01
Rio Grande ^a	~0	~0	N/A	N/A	0.78
Rio Salado	0.28	0.28	N/A	0.08	0.06
Sandia Mtn front	0.74	0.41	0.16	0.21	0.16
Southeast Mtn front	1.06	1.16	0.19	0.16	0.17
Total	5.45	4.86	N/A	2.63	2.14

Overall budget with isotopic data – little change River recharge – significant increase Basin Source – significant decrease

Sanford, W. E. et al., 2004, Hydrochemical tracers in the Middle Rio Grande Basin, USA: 2. Calibration of a groundwater model, *Hydrogeol. J.*,

Take Home Messages

- Know your riparian water sources
 - Basin GW Flood Recharge Human Related Source
- Assess potential for climate impacts on sources
 - Basin GW often little impact as residence time long
 - Flood recharge consider seasonality
 - Human sources?
- Assess human/other impacts on these sources
 - Runoff volumes due to uplands vegetation change
 - Groundwater pumping
 - Reservoirs/irrigation management
- Management implications
 - Evaluate climate sensitivity
 - Potential for change in runoff uplands issues
 - Need for GW models with water source accounting
 - I sotopes as tracer of riparian hydrologic change 25

Future Questions

• Are other places like San Pedro and Rio Grande?

- Stromberg et al. Are condition classes transferable?
- de la Cruz PhD student UA How do alluvial aquifers function on the Verde and Rio San Miguel?
- Simpson- soon to matriculate PhD student at UA How do alluvial aquifers function in Hassayampa and Bill Williams
- How do alluvial aquifer systems influence sustained water quality?
 - Soto-Lopez Spatial and temporal variability and structure?
 - Oelsner Large floodplain agricultural system of Rio Grande interaction with river?

• What is mechanism of surface-groundwater interaction?

- Simpson UA MS Hydrometric isotopic tracer linkage
- Treese UA MS Biological or physical clogging importance of floods
- Coupling KINEROS MODFLOW Vionet and MS student Kilb
- What is role and impact of decadal-scale climate variability?
 - Hogan, Baird, Meixner Stromberg EPA project
 - H. Ajami PhD UA
 - Simpson soon PhD UA
 - Kilb MS UA