
Wheat Growth Stages in Relation to Management Practices

Shawna Loper

September 19 & 20, 2012 University of Arizona Cooperative Extension

According to Large (1954) cereals develop as follow Feekes Growth Stages

Growing Degree Days/Heat Units

- Daily Growing Degree Day

 GDD= ((Daily Max Temp + Daily Min Temp)/2)-32
- AZMET

GDD and Development Stage

Development Stage	GDD Required	Accumulated GDD
Planting Date	0	0
Germination	180	180
Main Stem Leaf Production	215	395
Tiller Production	572	967
Stem Elongation	286	1253
Booting	286	1539
Heading	143	1682
Anthesis	86	1768
Grain Milk Stage	57	1825
Grain Dough Stage		

What affects growth stages?

- Planting date
- Cultivar "intrinsic earliness"
- Temperature: warmer → *faster*
 - "heat units"
 - "growing degree days" (86/45°F)
- Water management
- "Daylength"

Germination

 Plants per sq m are being determined. Land preparation and soil pests are important.
 Flooding will kill young plants.

Development Stage	GDD Required	Accumulated GDD
Germination	180	180

Main Stem Leaf Production

	Development Stage		Critical Manag	ement Factors
	Seedling stage is the growth wheat emergence until the to tiller	•	Early weed cor	ntrol
	leaf	2 leaf leaf1	coleoptil	
D	evelopment Stage	GDD Required		Accumulated GDD
	lain Stem Leaf Production	215		395

Tiller Production

Tillering usually starts when plant has 3-4 leaves. A (short growth cycle) wheat plant will typically produce 7-8 leaves on the main stem before stem elongation occurs	Development Stage		Critical Manag	ement Factors
	leaves. A (short growth cycle) wheat plant will typically produce 7-8 leaves on the			
Development Stage GDD Required Accumulated GDD	Development Stage	GDD Required		Accumulated GDD
Tiller Production572967	Tiller Production	572		967

Stem Elongation

Development Stage	2	Critical Management Factors
set. The tillers prod elongation will ofte	number of florets yield potential) is now uced last during stem	Good nutrient and water supply are determining yield potential.
evelopment Stage	GDD Required	Accumulated GDD
evelopment stage		Accumulated GDD
em Elongation	286	1253

Booting

Development Stage		Critical Mana	gement Factors
By booting each plant show productive tillers dependin conditions and crop densit	ng on growing	Ground cover Radiation from	vill significantly reduce yield. should be 90% by booting. n now till anthesis will grain number per unit area hot climates.
 1cm 1m	Photo: Mark Winfiel	d, U. of Bristol, 2012	8
l lom l lom l tom	Photo: Mark Winfiel	d, U. of Bristol, 2012	Accumulated GDD

Heading

Development Stage		Critical Manag	ement Factors
The spike is emerging from wir leaf	thin the flag	Water stress w yields	ill significantly reduce
l 1 cm	Pho	sto: Mark Winfield, U. «	of Bristol, 2012
Development Stage G	DD Required		Accumulated GDD
leading 1-	.43		1682

Anthesis

Development Stage		Critical Manag	ement Factors
Pollen is being released and grains are being fertilized	individual	Water stress	
	Рю	to: Lackermann, U. of	Wisconsin, 2009
Development Stage	GDD Required		Accumulated GDD
nthesis	86		1768

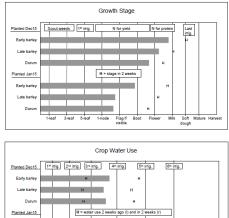
Grain Milk Stage

Development Stage		Critical Manag	ement Factors
When the grain is squeezed solution is apparent	, a milky	Water stress	
		Photo: J	ack Kelly Clark, U. of California, 1990
evelopment Stage	GDD Required	Photo: J	ack Kelly Clark, U. of California, 1990 Accumulated GDD

Grain Dough Stage

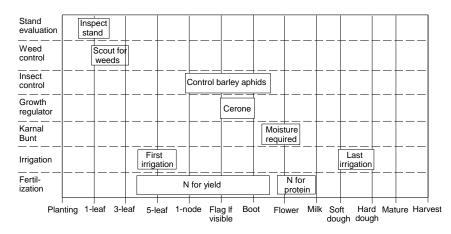
Development Stage Critic	al Management Factors
, ,	is almost set, but water stress will educe grain size and yield

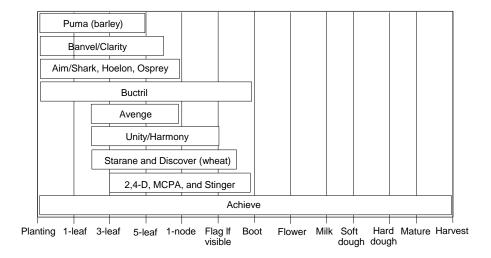
Photo: Jack Kelly Clark, U. of California, 1990


Ripening

Development Stage	Critical Management Factors
Grain is hard and firm and r harvest. Grain is best harve moisture content.	,
	AND

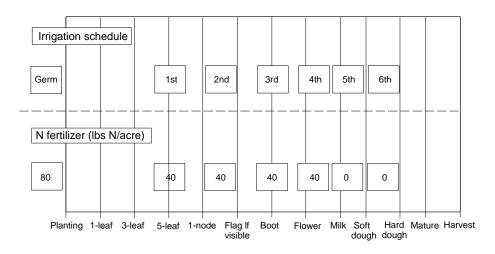
Photo: Bovidia.com, 2011


Buckeye Small Grain Advisory March 18, 2012



⁽Note: The irrigation timing is for flood irrigation on a sandy clay loam soil and does not consider rainfall. This advisory was developed by Mike Ottman, Extension Agronomist, University of Arizona using AZMET weather data. Funding for this project was received from the Arizona Grain Research and Promotion Council.)

Timing of management operations


Credit: Mike Ottman

Herbicide timing

Credit: Mike Ottman

Fertilizer and irrigation schedule

Credit: Mike Ottman

Wheat Yield Components

Critical Yield Component	Determined by
Tiller and head number	Jointing (stem elongation)
Head Size	Mid to late tillering
Kernel number per head	Jointing (stem elongation)
Kernel size	Beginning at flag leaf (before boot stage) and continuing through grain fill

Questions