

Watershed Monitoring Report, Issue 2, September 2004 From the Lab of Dave Walker, Ph.D. University of Arizona Environmental Research Lab, University of Arizona Ph: 520-626-2386 Fax: 520-573-0852 Email: dwalker@ag.arizona.edu

In this Issue:

Completed Monitoring Summer Saguaro Reservoir Sampling

Available Data Saguaro Algae Counts

Saguaro Physical Water Quality Parameters

News Climate and Drought

Other Watershed/Water Quality-Related Projects

Upcoming Watershed Meeting at ADEQ

Saguaro reservoir sampling

Thanks to Susan Fitch and Jennifer Hickman from ADEQ and Marc Dahlberg and Kevin Bright from AzG&F, Saguaro has been sampled on 7/14, 7/29, and 8/20. There have been no further reports of major fish kills even though, the number of potentially toxic organisms has significantly increased since July. Most of this increase in algal biomass in due to increased numbers of *Cylindrospermopsis raciborskii* and other species of potentially toxic cyanobacteria.

We have also recently found, in the riverine area, a gymnodinoid (species of *Gymnodinium*). Certain species of this genus are associated with red tides and the production of neurotoxic (Gymnodinium breve) and paralytic (Gymnodinium katenatum) shellfish poisons. Gymnodinoids, like most dinoflagellates, can often be autotrophic, heterotrophic, or both depending upon life stage and environmental condition. Dinoflagellates often behave more like animals than plants. Pfiesteria piscicdia is a dinoflagellate that killed scores of fish along the Carolina coast in the early 1990's. Pfiesteria kills by subduing with a neurotoxin and then literally "eating" the fish causing red sores.

There have been numerous red sores noticed in largemouth bass from all the Salt River Lakes. Virology and bacteriology done by Wade Cavender of AzG&F showed nothing abnormal except that 1 in 13 fish was affected with *Aeromonas hydrophila*. This species may become opportunistic under certain conditions and cause reddening around the fins but if it was a causative agent, more than 1 in 13 would have tested positive. According to Wade, the finding of Aeromonas on one fish doesn't explain the size, primary focus on fins, and blisters found on affected fish. Blisters on fins may be indicative of an ectoparasite but no external attachment has been noticed (per Wader Cavender AzG&F). Histology done here at the UA has shown nothing out of the ordinary. We do not believe that these sores were the primary cause of the fish kills that occurred earlier this summer but may be the result of opportunistic organisms taking advantage of already-stressed fish. The recent increase in the number of Gymnodinium at Saguaro makes sense if we think about the large amount of decaying fish from previous kills serving as "food" for heterotrophic organisms like Gymnodinium. We currently have no quantifiable reason for the red sores noticed on fish. We will be doing more investigation into the gymnodinoid as one possible cause.

The effect of water movement, including pumpback storage, on the release of toxins is unknown. As stated in previous reports, the riverine portion of the reservoirs typically contain the highest algal biomass and if large numbers of endotoxin producing species are lysed, it might lead to increases in free toxin in the water. We know from previous experience that mib and/or geosmin can be released in pulses when large amounts of taste and odor causing cyanobacteria are lysed and it seems logical that the same might be true for cyano-toxins. Unfortunately, the amount of water released hourly or daily from Mormon Flat Dam, and the amount of nightly pumpback, is unknown. Without accurate data regarding water

movement and inter-reservoir transfer, trying to determine any possible cause and effect is impossible.

We have submitted samples from Saguaro to Dr. Paul Zimba of the **USDA-ARS** in Stoneville Mississippi. Paul is very interested in anatoxin-a producers and what is happening in the Salt River reservoirs. He has volunteered to make axenic cultures of samples submitted from Saguaro. Making uni-algal cultures is an essential first step in identifying causative organisms and their potential to produce toxins under differing environmental conditions. Without this information, prediction or prevention of future events is difficult if not impossible.

We have found

cylindrospermopsin in relatively low levels (7.11 µg/L but in a concentrated zooplankton tow) in samples collected by AzG&F on 7/29 at Saguaro near Bagley Flats. It's important to note that just because the numbers of potentially toxic species of algae increase doesn't mean that conditions are favorable for toxin production or release into the water. The only way to quantify toxins in the water is to analyze for suspect toxins, not by merely identifying what species are present. It is possible to have very low levels of toxin-producing species but high levels of toxin in the water and vice-versa. Genes coding for toxin production have not been determined. A species produces toxin based upon environmental conditions and there is no "pre-determination" as to when, or if, any species will become toxic. There is also a poor understanding of environmental conditions necessary for toxin production.

We have found toxic levels of both microcystin and anatoxin-a in the stomachs of threadfin shad and bluegill submitted from Apache reservoir earlier in the spring. It's interesting that anatoxin-a was found at toxic levels in tissue even though, none was found in aqueous samples. Anatoxin-a is

easily degraded by sunlight and alkalinity and it's half-life on the Salt River reservoirs may only be a few hours at most. Fish tissue samples of anatoxin-a may be the most useful resource for detecting this toxin on the Salt River reservoirs and elsewhere. Due to a very fast degradation rate under certain conditions, non-detects of anatoxina in aqueous samples may be dangerously misleading. Unfortunately, we did not have these results back during subsequent fish kills or we would have analyzed stomachs from these fish as well. The toxic levels of anatoxin-a and microcystin in fish stomachs collected during a kill at Apache is supportive evidence of cyano-toxins as the causative agent for other fish kills in the Salt River reservoirs.

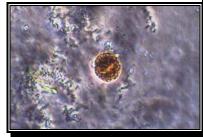
So, why toxin production in the spring and early summer and why have the fish kills stopped? It's believed that toxin production evolved to prevent grazing from herbivorous zooplankton and also as an allelopathic mechanism for other species of algae. It makes sense that toxin production would be highest while the mixed assemblage of phytoplankton was on an upward growth trend. This would exclude, to a large extent, other species of nontoxin producing species. Once toxinproducing species have dominated the phytoplankton, toxin production may no longer be necessary. This is one possible scenario which does make sense upon examination of the algae data from Saguaro.

Dissolved oxygen levels at the time of the kills were more than adequate to sustain aquatic life. The DO levels in Saguaro the day of the major fish kill on 6/10 as well as the profile from Canyon taken the day before the kill on 6/9 showed no physicochemical parameters that were suspect. Actually, DO levels in Saguaro are appreciably lower now than in June but yet, no fish have recently died.

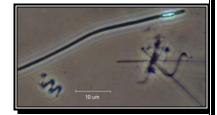
Dissolved oxygen and ORP levels within the hypolimnion of Saguaro have significantly decreased since the summer of 2002. This same trend has been noticed on all the

Salt River reservoirs. This will have long-term consequences on water quality in these reservoirs and will also help to facilitate inter-reservoir transfer of nutrients and metals. Some degradation in water quality is being noticed below Stewart Mtn. Dam and in downstream treatment plants. Per Paul Westerhoff at ASU in their newsletter. both Val Vista and Verde WTP's noticed increases in reduced Fe and Mn over a month ago. This would be consistent with what we find not only in Saguaro, but in all of the reservoirs along this chain. Keeping in mind that hypolimnetic anoxia mirrors epilimnetic algal production, the issue of increased algal growth and reducing conditions in the hypolimnion can't be separated from each other.

Summer chlorophyll a levels in Saguaro have steadily increased since 2002. This correlates with the increase in hypolimnetic anoxia and reducing conditions not only in Saguaro, but in all of the other reservoirs along this chain also. We routinely sample sediments from all of the reservoirs for nutrients and metals. Iron and manganese are always found in abundance but only becomes problematic with an increase in hypolimnetic anoxia. The reduced Fe and Mn that is making it to treatment plants may also have adverse effects on the Salt River below the reservoirs if they precipitate over the benthos.


It is possible that the increased algal biomass and hypolimnetic anoxia will form a positive feedback loop. Hypolimnetic anoxia may result in increases in ammonia and phosphorous both nutrients for algal growth.

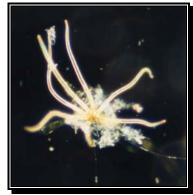
While the Salt River above Roosevelt may have long periods of acceptable or even relatively "good" water quality, it is sporadic and flashy. Low levels of metals and nutrients can enter Roosevelt for most of the year, however, substantial loading can and does occur during either monsoon rains or spring snowmelt. As explained by Cheryl Pailzote of the WMAT during the last meeting, re-vegetation of burned areas will take several more years. The increase in metals, nutrients, and carbon loading to the reservoirs that has already occurred, will probably be felt within the reservoirs and downstream areas for years to come.


Saguaro Physical Water Quality Parameters

Saguaro Algae Counts from 8/20/04 (potentially toxic species in red)

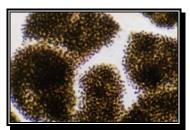
Saguaro Algae Counts from 8/20/04 (potentially toxic species in red)						
Site	Division	Genus	Species	Units/mL		
SRSAGA	Cyanophyta	Cylindrospermopsis	raciborskii	6790		
SRSAGA	Cyanophyta	Anabaena	laxa	3705		
SRSAGA	Cyanophyta	Anabaenopsis	circularis	3516		
SRSAGA	Cyanophyta	Pseudanabaena		3246		
SRSAGA	Chlorophyta	Carteria		2162		
SRSAGA	Cyanophyta	Oscillatoria	agardhii	1583		
SRSAGA	Chrysophyta	Diatoma	vulgare	1175		
SRSAGA	Pyrrophyta	Gymnodinium		1124		
SRSAGA	Chrysophyta	Fragilaria		834		
SRSAGA	Cyanophyta	Microcystis		622		
SRSAGA5	Cyanophyta	Cylindrospermopsis	raciborskii	23477		
SRSAGA5	Cyanophyta	Anabaenopsis	circularis	7481		
SRSAGA5	Cyanophyta	Pseudanabaena		5106		
SRSAGA5	Chlorophyta	Carteria		3175		
SRSAGA5	Cyanophyta	Oscillatoria	agardhii	3060		
SRSAGA5	Chlorophyta	Scenedesmus		2430		
SRSAGA5	Chlorophyta	Chodatella		2307		
SRSAGA5	Chrysophyta	Stephanodiscus		1444		
SRSAGA5	Cyanophyta	Anabaena	laxa	1162		
SRSAGA5	Cyanophyta	Merismopedia	elegans	769		
SRSAGB	Cyanophyta	Cylindrospermopsis	raciborskii	38261		
SRSAGB	Pyrrophyta	Gymnodinium		33485		
SRSAGB	Cyanophyta	Anabaenopsis	circularis	15370		
SRSAGB	Cyanophyta	Anabaena	scheremetievi	7108		
SRSAGB	Cyanophyta	Pseudanabaena		3975		
SRSAGB	Cyanophyta	Microcystis		3480		
SRSAGB	Chrysophyta	Synedra		1614		
SRSAGB	Euglenophyta	Phacus		1387		
SRSAGC	Pyrrophyta	Gymnodinium		25136		
SRSAGC	Cyanophyta	Cylindrospermopsis	raciborskii	19343		
SRSAGC	Cyanophyta	Anabaenopsis	circularis	6495		
SRSAGC	Euglenophyta	Phacus		2677		
SRSAGC	Chlorophyta	Trachelomonas		1370		
SRSAGC	Chrysophyta	Navicula		426		
SRSAGC	Chrysophyta	Pinnularia		134		
Total units/ml	Site A: 24,757					

Gymnodinoid from Saguaro


Cylindrospermopsis raciborksii

Total units/ml Site A: 24,757 Total units/mL Site A at 5 meters: 50,411 Total units/mL Site B: 104,680 Total units/mL Site C: 55,581

Saguaro A	Igae Counts fr	om 7/29/04 (potentia	Ily toxic species	in red)
Site	Division	Genus	Species	Units/mL
SRSAGA	Cyanophyta	Cylindrospermopsis	raciborskii	2579
SRSAGA	Cyanophyta	Anabaenopsis	circularis	854
SRSAGA	Cyanophyta	Anabaena	laxa	612
SRSAGA	Cyanophyta	Aphanizomenon	flos-aquae	552
SRSAGA	Cyanophyta	Oscillatoria	agardhii	448
SRSAGA	Chlorophyta	Carteria		427
SRSAGA	Cyanophyta	Pseudanabaena		360
SRSAGA	Chlorophyta	Chlamydomonas		311
SRSAGA	Chrysophyta	Nitzchia		153
SRSAGA	Chrysophyta	Stephanodiscus		122
SRSAGA	Cyanophyta	Microcystis		83
SRSAGB	Cyanophyta	Cylindrospermopsis	raciborskii	6888
SRSAGB	Cyanophyta	Anabaena	laxa	3887
SRSAGB	Cyanophyta	Microcystis		3064
SRSAGB	Cyanophyta	Aphanizomenon	flos-aquae	2983
SRSAGB	Cyanophyta	Anabaenopsis	circularis	1637
SRSAGB	Chlorophyta	Carteria		860
SRSAGB	Chlorophyta	Scenedesmus		818
SRSAGB	Pyrrophyta	Gymnodinium		769
SRSAGB	Euglenophyta	Phacus		583
SRSAGB	Cyanophyta	Oscillatoria	agardhii	300
SRSAGB	Chlorophyta	Closterium		264
SRSAGB	Chrysophyta	Fragilaria		228
SRSAGB	Cyanophyta	Merismopedia	elegans	207
SRSAGB	Chrysophyta	Gomphonema		162
SRSAGB	Chrysophyta	Nitzchia		119
SRSAGC	Cyanophyta	Cylindrospermopsis	raciborskii	3449
SRSAGC	Cyanophyta	Microcystis		1840
SRSAGC	Pyrrophyta	Gymnodinium		1477
SRSAGC	Cyanophyta	Anabaenopsis	circularis	1083
SRSAGC	Cyanophyta	Pseudanabaena		824
SRSAGC	Chlorophyta	Chlamydomonas		411
SRSAGC	Cyanophyta	Anabaena	laxa	333
SRSAGC	Cyanophyta	Aphanizomenon	flos-aquae	164
SRSAGC	Chrysophyta	Fragilaria		162
SRSAGC	Chrysophyta	Gomphonema		159
SRSAGC	Chlorophyta	Chodatella		137
SRSAGC	Cyanophyta	Merismopedia	elegans	134
SRSAGC	Chlorophyta	Coelastrum		117
SRSAGC	Chrysophyta	Fragilaria		103

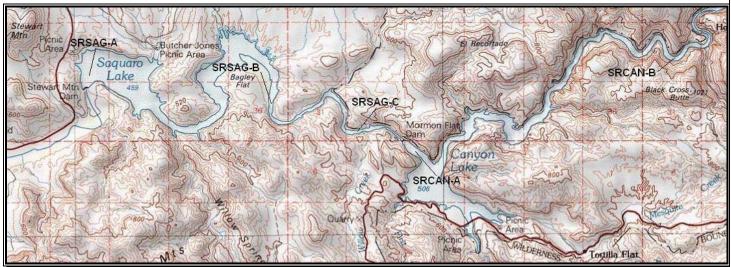

C. raciborskii with 2 heterocysts and a terminal akinete.

Freshwater hydra from Apache.

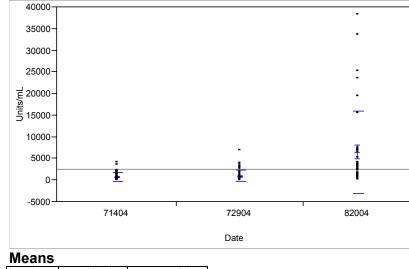
Total units/ml Site A: 6501 Total units/mL Site B: 22,769 Total units/mL Site C: 10,477

Saguaro A	gae Counts fr	om 7/14/04 (potentia	Ily toxic species	s in red)
Site	Division	Genus	Species	Units/mL
SRSAGA	Cyanophyta	Aphanizomenon	flos-aquae	1687
SRSAGA	Chlorophyta	Chlamydomonas		1862
SRSAGA	Cyanophyta	Cylindrospermopsis	raciborskii	1180
SRSAGA	Cyanophyta	Anabaenopsis	circularis	412
SRSAGA	Cyanophyta	Anabaena	laxa	167
SRSAGA	Chlorophyta	Carteria		134
SRSAGA	Chrysophyta	Diploneis		127
SRSAGA	Cyanophyta	Oscillatoria	aghardii	83
SRSAGA	Cyanophyta	Gloeocapsa		81
SRSAGA	Chrysophyta	Synedra		65
SRSAGB	Cyanophyta	Aphanizomenon	flos-aquae	4130
SRSAGB	Cyanophyta	Cylindrospermopsis	raciborskii	2051
SRSAGB	Cyanophyta	Anabaena	laxa	2063
SRSAGB	Cyanophyta	Anabaena	torulosa	1409
SRSAGB	Cyanophyta	Anabaenopsis	circularis	1183
SRSAGB	Chlorophyta	Carteria		740
SRSAGB	Cyanophyta	Oscillatoria	agardhii	581
SRSAGB	Cyanophyta	Anabaena	variabilis	264
SRSAGB	Chlorophyta	Scenedesmus		259
SRSAGB	Chlorophyta	Coelastrum		220
SRSAGB	Chlorophyta	Chlamydomonas		174
SRSAGB	Chrysophyta	Synedra		158
SRSAGB	Chlorophyta	Lepocinclus		110
SRSAGB	Chlorophyta	Cosmarium		71
SRSAGB	Chrysophyta	Navicula		38
SRSAGC	Cyanophyta	Aphanizomenon	flos-aquae	3588
SRSAGC	Chlorophyta	Chlamydomonas		2140
SRSAGC	Cyanophyta	Anabaenopsis	circularis	1387
SRSAGC	Cyanophyta	Cylindrospermopsis	raciborskii	808
SRSAGC	Cyanophyta	Anabaena	variabilis	725
SRSAGC	Chlorophyta	Carteria		439
SRSAGC	Cyanophyta	Anabaena	laxa	427
SRSAGC	Cyanophyta	Oscillatoria	agardhii	416
SRSAGC	Chlorophyta	Scenedesmus		386
SRSAGC	Chlorophyta	Coelastrum		347
SRSAGC	Chrysophyta	Melosira		265
SRSAGC	Cyanophyta	Gloeocapsa		248
SRSAGC	Chrysophyta	Diploneis		200
SRSAGC	Euglenophyta	Thoracomonas		162

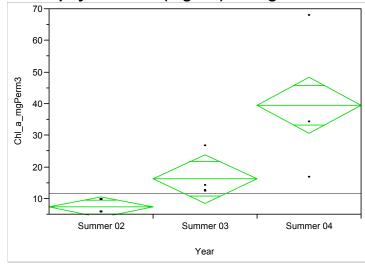
Microcystis colonies


Anabaenopsis circularis

Total units/ml Site A: 5498 Total units/mL Site B: 9321 Total units/mL Site C: 7950 Saguaro Lake Fish Kill, 6/10/04. *Photos courtesy of Dave Rigo, AzG&F Dept. and www.azbasszone.com*



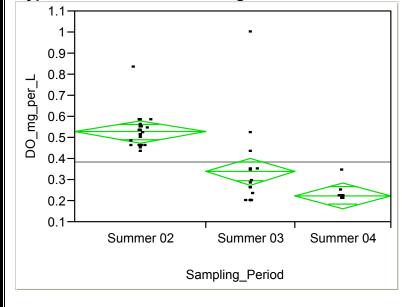
Saguaro and Canyon Reservoir Sampling Sites



Saguaro Mean Algae Counts by Date

Level	Number	Mean
71404	40	771.90
72904	42	947.14
82004	36	6543.03

Chlorophyll a levels (mg/m3) in Saguaro for the summers of 2002, 2003, and 2004.

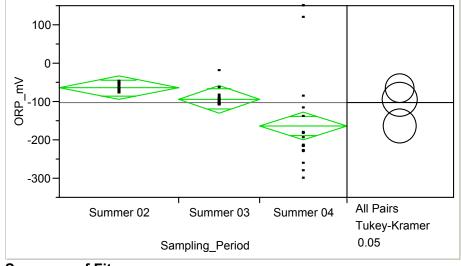

Physico	chemical Da	ta from SRS	SAG-A on 8	/20/04					
		Temp							
Depth	Time	(degrees	SpCond			DO			
(m)	(HHMMSS)	C)	(µs/cm2)	рН	DO (% sat.)	(mg/L)	ORP (mV)		
0.1	103552	28.19	2198	8.5	104.1	6.62	115		
0.5	103635	27.91	2196	8.51	101.7	6.51	118		
1	103707	27.82	2196	8.51	101.1	6.48	120		
2	103800	27.73	2195	8.49	104	6.67	124		
3	103855	27.55	2193	8.42	92.5	5.95	129		
4	103941	27.46	2194	8.4	87.9	5.67	132		
5	104057	26.86	2179	7.7	25.5	1.66	147		
4.5	104219	27.41	2196	8.44	92.1	5.94	136		
5.5	104317	25.84	2173	7.34	5	0.34	148		
6.1	104413	25.6	2178	7.33	3.8	0.25	119		
7	104629	25.08	2175	7.27	3.2	0.22	-87		
8	104719	24.75	2176	7.3	3.2	0.22	-119		
8.9	104759	24.54	2172	7.3	3.2	0.22	-140		
10	104858	24.36	2176	7.28	3.1	0.21	-185		
12	105003	24.04	2168	7.3	3.1	0.21	-218		
14	105100	23.84	2151	7.31	3.1	0.21	-231		
16	105158	23.69	2143	7.31	3.2	0.22	-216		
18	105241	23.61	2138	7.31	3.1	0.22	-230		
20	105343	23.53	2128	7.31	3	0.21	-195		
22	105430	23.43	2124	7.31	3.1	0.22	-183		
24	105550	23.35	2123	7.32	3.2	0.22	-217		
26.1	105705	23.25	2123	7.32	3.2	0.22	-263		
28	105756	23.14	2124	7.32	3.2	0.22	-283		
29.9	105855	23.02	2125	7.3	3.2	0.22	-300		
Physico	chemical Da	ta from SRS	SAG-B on 8	/20/04					
		Physicochemical Data from SRSAG-B on 8/20/04							
		Temp							
Depth	Time	Temp (degrees	SpCond			DO			
(m)	(HHMMSS)	(degrees C)	(µs/cm2)	рН	DO (% sat)	(mg/L)	ORP (mV)		
(m) 0	(HHMMSS) 121427	(degrees C) 28.73	(µs/cm2) 2142	8.66	135.7	(mg/L) 8.56	56		
(m) 0 0.5	(HHMMSS) 121427 121511	(degrees C) 28.73 27.9	(µs/cm2) 2142 2137	8.66 8.69	135.7 142.3	(mg/L) 8.56 9.11	56 57		
(m) 0 0.5 0.9	(HHMMSS) 121427 121511 121557	(degrees C) 28.73 27.9 27.82	(µs/cm2) 2142 2137 2134	8.66 8.69 8.68	135.7 142.3 144.6	(mg/L) 8.56 9.11 9.27	56 57 58		
(m) 0.5 0.9 2	(HHMMSS) 121427 121511 121557 121654	(degrees C) 28.73 27.9 27.82 27.27	(µs/cm2) 2142 2137 2134 2139	8.66 8.69 8.68 8.68	135.7 142.3 144.6 132.8	(mg/L) 8.56 9.11 9.27 8.59	56 57 58 63		
(m) 0 0.5 0.9	(HHMMSS) 121427 121511 121557 121654 121748	(degrees C) 28.73 27.9 27.82 27.27 26.94	(µs/cm2) 2142 2137 2134 2139 2131	8.66 8.69 8.68 8.6 8.6 8.44	135.7 142.3 144.6 132.8 110	(mg/L) 8.56 9.11 9.27 8.59 7.16	56 57 58 63 69		
(m) 0.5 0.9 2 3 4	(HHMMSS) 121427 121511 121557 121654 121748 121947	(degrees C) 28.73 27.9 27.82 27.27 26.94 26.57	(µs/cm2) 2142 2137 2134 2139 2131 2128	8.66 8.69 8.68 8.6 8.44 8.23	135.7 142.3 144.6 132.8 110 89.5	(mg/L) 8.56 9.11 9.27 8.59 7.16 5.87	56 57 58 63 69 77		
(m) 0.5 0.9 2 2 3 4 5	(HHMMSS) 121427 121511 121557 121654 121748 121947 122039	(degrees C) 28.73 27.9 27.82 27.27 26.94 26.57 26.18	(µs/cm2) 2142 2137 2134 2139 2131 2128 2115	8.66 8.69 8.68 8.6 8.44 8.23 8.06	135.7 142.3 144.6 132.8 110 89.5 77.7	(mg/L) 8.56 9.11 9.27 8.59 7.16 5.87 5.13	56 57 58 63 69 77 82		
(m) 0.5 0.9 2 2 3 3 4 5 5 6	(HHMMSS) 121427 121511 121557 121654 121748 121947 122039 122152	(degrees C) 28.73 27.9 27.82 27.27 26.94 26.57 26.18 25.52	(µs/cm2) 2142 2137 2134 2139 2131 2128 2115 2114	8.66 8.69 8.68 8.64 8.44 8.23 8.06 7.83	135.7 142.3 144.6 132.8 110 89.5 77.7 56.6	(mg/L) 8.56 9.11 9.27 8.59 7.16 5.87 5.13 3.78	56 57 58 63 69 77 82 90		
(m) 0.5 0.9 2 2 3 3 4 5 5 6 6	(HHMMSS) 121427 121511 121557 121654 121748 121947 122039 122152 122255	(degrees C) 28.73 27.9 27.82 27.27 26.94 26.57 26.18 25.52 25.34	(µs/cm2) 2142 2137 2134 2139 2131 2128 2115 2114 2110	8.66 8.69 8.68 8.64 8.44 8.23 8.06 7.83 7.78	135.7 142.3 144.6 132.8 110 89.5 77.7 56.6 51	(mg/L) 8.56 9.11 9.27 8.59 7.16 5.87 5.13 3.78 3.41	56 57 58 63 69 77 82 90 91		
(m) 0.5 0.9 2 2 3 3 4 4 5 6 6 7 7 8	(HHMMSS) 121427 121511 121557 121654 121748 121947 122039 122152 122255 122349	(degrees C) 28.73 27.9 27.82 27.27 26.94 26.57 26.18 25.52 25.34 24.81	(µs/cm2) 2142 2137 2134 2139 2131 2128 2115 2114 2110 2104	8.66 8.69 8.68 8.6 8.44 8.23 8.06 7.83 7.78 7.66	135.7 142.3 144.6 132.8 110 89.5 77.7 56.6 51 46	(mg/L) 8.56 9.11 9.27 8.59 7.16 5.87 5.13 3.78 3.41 3.11	56 57 58 63 69 77 82 90 91 91 94		
(m) 0.5 0.9 2 2 3 4 5 5 6 6 7 7 8 9	(HHMMSS) 121427 121511 121557 121654 121748 121947 122039 122152 122255 122349 122445	(degrees C) 28.73 27.9 27.82 27.27 26.94 26.57 26.18 25.52 25.34 24.81 24.81	(µs/cm2) 2142 2137 2134 2139 2131 2128 2115 2114 2110 2104 2100	8.66 8.69 8.68 8.44 8.23 8.06 7.83 7.78 7.66 7.66	135.7 142.3 144.6 132.8 110 89.5 77.7 56.6 51	(mg/L) 8.56 9.11 9.27 8.59 7.16 5.87 5.13 3.78 3.41	56 57 58 63 69 77 82 90 91		
(m) 0.5 0.9 2 2 3 4 5 5 6 6 7 7 8 8 9	(HHMMSS) 121427 121511 121557 121654 121748 121947 122039 122152 122255 122349	(degrees C) 28.73 27.9 27.82 27.27 26.94 26.57 26.18 25.52 25.34 24.81 24.35 ta from SRS	(µs/cm2) 2142 2137 2134 2139 2131 2128 2115 2114 2110 2104 2100	8.66 8.69 8.68 8.44 8.23 8.06 7.83 7.78 7.66 7.66	135.7 142.3 144.6 132.8 110 89.5 77.7 56.6 51 46	(mg/L) 8.56 9.11 9.27 8.59 7.16 5.87 5.13 3.78 3.41 3.11	56 57 58 63 69 77 82 90 91 91 94		
(m) 0.5 0.9 2 3 3 4 5 6 6 7 7 8 9 9 Physico	(HHMMSS) 121427 121511 121557 121654 121748 121947 122039 122152 122255 122349 122445 chemical Da	(degrees C) 28.73 27.9 27.82 27.27 26.94 26.57 26.18 25.52 25.34 24.81 24.35 ta from SRS Temp	(µs/cm2) 2142 2137 2134 2139 2131 2128 2115 2114 2110 2104 2100 SAG-C on 8	8.66 8.69 8.68 8.44 8.23 8.06 7.83 7.78 7.66 7.66	135.7 142.3 144.6 132.8 110 89.5 77.7 56.6 51 46	(mg/L) 8.56 9.11 9.27 8.59 7.16 5.87 5.13 3.78 3.41 3.11 2.92	56 57 58 63 69 77 82 90 91 91 94		
(m) 0.5 0.9 2 2 3 3 4 4 5 5 6 6 7 7 8 9 9 Physicoo	(HHMMSS) 121427 121511 121557 121654 121748 121947 122039 122152 122255 122349 122445 chemical Da Time	(degrees C) 28.73 27.9 27.82 27.27 26.94 26.57 26.18 25.52 25.34 24.81 24.35 ta from SRS Temp (degrees	(µs/cm2) 2142 2137 2134 2139 2131 2128 2115 2114 2110 2104 2100 SAG-C on 8 SpCond	8.66 8.69 8.68 8.64 8.44 8.23 8.06 7.83 7.78 7.66 7.66 7.66	135.7 142.3 144.6 132.8 110 89.5 77.7 56.6 51 46 42.7	(mg/L) 8.56 9.11 9.27 8.59 7.16 5.87 5.13 3.78 3.41 3.11 2.92 DO	56 57 58 63 69 77 82 90 91 91 94 95		
(m) 0 0.5 0.9 2 3 4 5 6 7 8 9 Physicod Depth (m)	(HHMMSS) 121427 121511 121557 121654 121748 121947 122039 122152 122255 122349 122445 chemical Da Time (HHMMSS)	(degrees C) 28.73 27.9 27.82 27.27 26.94 26.57 26.18 25.52 25.34 24.81 24.35 ta from SRS Temp (degrees C)	(μs/cm2) 2142 2137 2134 2139 2131 2128 2115 2114 2110 2104 2100 SAG-C on 8 SpCond (μs/cm2)	8.66 8.69 8.68 8.6 8.44 8.23 8.06 7.83 7.78 7.66 7.66 7.66 7.66	135.7 142.3 144.6 132.8 110 89.5 77.7 56.6 51 46 42.7	(mg/L) 8.56 9.11 9.27 8.59 7.16 5.87 5.13 3.78 3.41 3.11 2.92 DO (mg/L)	56 57 58 63 69 77 82 90 90 91 94 95		
(m) 0 0.5 0.9 2 3 4 5 6 7 8 9 Physicod Depth (m) 0	(HHMMSS) 121427 121511 121557 121654 121748 121947 122039 122152 122255 122349 122445 chemical Da Time (HHMMSS) 132943	(degrees C) 28.73 27.9 27.82 27.27 26.94 26.57 26.18 25.52 25.34 24.81 24.35 ta from SRS Temp (degrees C) 23.33	(μs/cm2) 2142 2137 2134 2139 2131 2128 2115 2114 2110 2104 2100 SAG-C on 8 SpCond (μs/cm2) 2084	8.66 8.69 8.68 8.6 8.44 8.23 8.06 7.83 7.78 7.66 7.66 7.66 7.66 /20/04	135.7 142.3 144.6 132.8 110 89.5 77.7 56.6 51 46 42.7	(mg/L) 8.56 9.11 9.27 8.59 7.16 5.87 5.13 3.78 3.41 3.11 2.92 DO (mg/L) 2.65	56 57 58 63 69 77 82 90 90 91 94 95 0RP (mV) 81		
(m) 0.5 0.9 2 2 3 3 4 4 5 6 6 7 7 8 9 9 Physicoo Physicoo Depth (m) 0 0.9	(HHMMSS) 121427 121511 121557 121654 121748 121947 122039 122152 122255 122349 122445 chemical Da Time (HHMMSS) 132943 133016	(degrees C) 28.73 27.9 27.82 27.27 26.94 26.57 26.18 25.52 25.34 24.81 24.35 ta from SRS Temp (degrees C) 23.33 23.33	(µs/cm2) 2142 2137 2134 2139 2131 2128 2115 2114 2110 2104 2100 SAG-C on 8 SpCond (µs/cm2) 2084 2085	8.66 8.69 8.68 8.68 8.44 8.23 8.06 7.83 7.78 7.66 7.66 7.66 /20/04	135.7 142.3 144.6 132.8 110 89.5 77.7 56.6 51 46 42.7 DO (% sat) 38.1 37.6	(mg/L) 8.56 9.11 9.27 8.59 7.16 5.87 5.13 3.78 3.41 3.11 2.92 DO (mg/L) 2.65 2.61	56 57 58 63 69 77 82 90 91 91 94 95 0RP (mV) 81 81		
(m) 0 0.5 0.9 2 3 4 5 6 7 8 9 Physico Depth (m) 0 0.9 2.2	(HHMMSS) 121427 121511 121557 121654 121748 121947 122039 122152 122255 122349 122445 chemical Da Time (HHMMSS) 132943 133016 133210	(degrees C) 28.73 27.9 27.82 27.27 26.94 26.57 26.18 25.52 25.34 24.81 24.35 ta from SRS ta from SRS C) 23.33 23.33 23.33	(µs/cm2) 2142 2137 2134 2139 2131 2128 2115 2114 2110 2104 2100 SAG-C on 8 SpCond (µs/cm2) 2084 2085 2084	8.66 8.69 8.68 8.64 8.44 8.23 8.06 7.83 7.78 7.66 7.66 7.66 7.66 7.56 7.56 7.55	135.7 142.3 144.6 132.8 110 89.5 77.7 56.6 51 46 42.7 DO (% sat) 38.1 37.6 36.6	(mg/L) 8.56 9.11 9.27 8.59 7.16 5.87 5.13 3.78 3.41 3.11 2.92 DO (mg/L) 2.65 2.61 2.55	56 57 58 63 69 77 82 90 91 91 94 95 0RP (mV) 81 81 81 82		
(m) 0 0.5 0.9 2 3 4 5 6 7 8 9 Physico 0 Depth (m) 0 0.9 2.2 3.4	(HHMMSS) 121427 121511 121557 121654 121748 121947 122039 122152 122255 122349 122445 Chemical Da Time (HHMMSS) 132943 133016 133210 133314	(degrees C) 28.73 27.9 27.82 27.27 26.94 26.57 26.18 25.52 25.34 24.81 24.35 ta from SRS Temp (degrees C) 23.33 23.33 23.29	(μs/cm2) 2142 2137 2134 2139 2131 2128 2115 2114 2110 2104 2100 SAG-C on 8 SpCond (μs/cm2) 2084 2085 2084 2084	8.66 8.69 8.68 8.64 8.44 8.23 8.06 7.83 7.78 7.66 7.66 7.66 7.66 7.56 7.56 7.55 7.56	135.7 142.3 144.6 132.8 110 89.5 77.7 56.6 51 46 42.7 DO (% sat) 38.1 37.6 36.6 35.5	(mg/L) 8.56 9.11 9.27 8.59 7.16 5.87 5.13 3.78 3.41 3.11 2.92 DO (mg/L) 2.65 2.61 2.55 2.47	56 57 58 63 69 77 82 90 91 91 94 95 95 ORP (mV) 81 81 81 82 82		
(m) 0 0.5 0.9 2 3 4 5 6 7 8 9 Physico 0 Depth (m) 0 0.9 2.2 3.4	(HHMMSS) 121427 121511 121557 121654 121748 121947 122039 122152 122255 122349 122445 Chemical Da Time (HHMMSS) 132943 133016 133210 133314	(degrees C) 28.73 27.9 27.82 27.27 26.94 26.57 26.18 25.52 25.34 24.81 24.35 ta from SRS C) 23.33 23.33 23.33 23.29 ta from SRS	(μs/cm2) 2142 2137 2134 2139 2131 2128 2115 2114 2110 2104 2100 SAG-C on 8 SpCond (μs/cm2) 2084 2085 2084 2084	8.66 8.69 8.68 8.64 8.44 8.23 8.06 7.83 7.78 7.66 7.66 7.66 7.66 7.56 7.56 7.55 7.56	135.7 142.3 144.6 132.8 110 89.5 77.7 56.6 51 46 42.7 DO (% sat) 38.1 37.6 36.6	(mg/L) 8.56 9.11 9.27 8.59 7.16 5.87 5.13 3.78 3.41 3.11 2.92 DO (mg/L) 2.65 2.61 2.55 2.47	56 57 58 63 69 77 82 90 91 91 94 95 95 ORP (mV) 81 81 81 82 82		
(m) 0 0.5 0.9 2 3 4 5 6 7 8 9 Physicod Depth (m) 0 0.9 2.2 3.4 Physicod	(HHMMSS) 121427 121511 121557 121654 121748 121947 122039 122152 122255 122349 122445 chemical Da 132943 133016 133210 133314 chemical Da	(degrees C) 28.73 27.9 27.82 27.27 26.94 26.57 26.18 25.52 25.34 24.81 24.35 ta from SRS C) 23.33 23.33 23.33 23.29 ta from SRS	(μs/cm2) 2142 2137 2134 2139 2131 2128 2115 2114 2100 SAG-C on 8 SpCond (μs/cm2) 2084 2084 2085 2084 2084 2084	8.66 8.69 8.68 8.64 8.44 8.23 8.06 7.83 7.78 7.66 7.66 7.66 7.66 7.56 7.56 7.55 7.56	135.7 142.3 144.6 132.8 110 89.5 77.7 56.6 51 46 42.7 DO (% sat) 38.1 37.6 36.6 35.5	(mg/L) 8.56 9.11 9.27 8.59 7.16 5.87 5.13 3.78 3.41 3.11 2.92 DO (mg/L) 2.65 2.61 2.55 2.47 man, AD	56 57 58 63 69 777 82 90 91 91 94 95 95 0RP (mV) 81 81 81 82 82		
(m) 0 0.5 0.9 2 3 4 5 6 7 8 9 Physico 0 0 0 0.9 2.2 3.4 Physico 0 0.9 2.2 3.4	(HHMMSS) 121427 121511 121557 121654 121748 121947 122039 122152 122255 122349 122445 chemical Da Time (HHMMSS) 132943 133016 133210 133314 chemical Da	(degrees C) 28.73 27.9 27.82 27.27 26.94 26.57 26.18 25.52 25.34 24.81 24.35 ta from SRS C) 23.33 23.33 23.33 23.29 ta from SRS	(µs/cm2) 2142 2137 2134 2139 2131 2128 2115 2114 2100 2104 2100 SAG-C on 8 SpCond (µs/cm2) 2084 2085 2084 2085 2084 2084 2084 2084	8.66 8.69 8.68 8.44 8.23 8.06 7.83 7.78 7.66 7.66 7.66 7.66 7.56 7.56 7.55 7.56 7.55 7.56	135.7 142.3 144.6 132.8 110 89.5 77.7 56.6 51 46 42.7 DO (% sat) 38.1 37.6 36.6 35.5 m Jenny Hick	(mg/L) 8.56 9.11 9.27 8.59 7.16 5.87 5.13 3.78 3.41 3.11 2.92 DO (mg/L) 2.65 2.61 2.55 2.47 man, AD	56 57 58 63 69 77 82 90 91 91 94 95 92 81 81 81 81 82 82 82		
(m) 0 0.5 0.9 2 3 4 5 6 7 8 9 Physicod Depth (m) 0 0.9 2.2 3.4 Physicod Depth (m)	(HHMMSS) 121427 121511 121557 121654 121748 121748 121947 122039 122152 122255 122349 122445 chemical Da Time (HHMMSS) 133016 133210 133314 chemical Da	(degrees C) 28.73 27.9 27.82 27.27 26.94 26.57 26.18 25.52 25.34 24.81 24.35 ta from SRS C) 23.33 23.33 23.33 23.29 ta from SRS Temp (degrees C)	(μs/cm2) 2142 2137 2134 2139 2131 2128 2115 2114 2100 2104 2100 SAG-C on 8 SpCond (μs/cm2) 2084 2085 2084 2085 2084 2085 2084 2085	8.66 8.69 8.68 8.44 8.23 8.06 7.83 7.78 7.66 7.66 7.66 7.66 7.56 7.55 7.56 7.55 7.56 /29/04 (fror	135.7 142.3 144.6 132.8 110 89.5 77.7 56.6 51 46 42.7 DO (% sat) 38.1 37.6 36.6 35.5 m Jenny Hick	(mg/L) 8.56 9.11 9.27 8.59 7.16 5.87 5.13 3.78 3.41 3.11 2.92 DO (mg/L) 2.65 2.61 2.55 2.47 man, AD DO (mg/L)	56 57 58 63 69 77 82 90 91 91 94 95 95 0RP (mV) 81 81 81 81 82 82 92 PEQ)		
(m) 0 0.5 0.9 2 3 4 5 6 7 8 9 Physico 0 0 0 0.9 2.2 3.4 Physico 0 0.9 2.2 3.4 Physico 0 0.9 0.9 0.9 0.9 0.9 0.9 0.9	(HHMMSS) 121427 121511 121557 121654 121748 121947 122039 122152 122255 122349 122445 Chemical Da Time (HHMMSS) 133016 133210 133314 Chemical Da Time (MMHHSS) 8:02:11	(degrees C) 28.73 27.9 27.82 27.27 26.94 26.57 26.18 25.52 25.34 24.81 24.35 ta from SRS C) 23.33 23.33 23.33 23.29 ta from SRS Temp (degrees C) 28.31	(μs/cm2) 2142 2137 2134 2139 2131 2128 2115 2114 2100 SAG-C on 8 SpCond (μs/cm2) 2084 2085 2085 2	8.66 8.69 8.68 8.64 8.44 8.23 8.06 7.83 7.78 7.66 7.66 7.66 7.66 7.55 7.56 7.55 7.56 7.55 7.56 7.55 7.56	135.7 142.3 144.6 132.8 110 89.5 77.7 56.6 51 46 42.7 DO (% sat) 38.1 37.6 36.6 35.5 m Jenny Hick DO (% sat) 114.5	(mg/L) 8.56 9.11 9.27 8.59 7.16 5.87 5.13 3.78 3.41 3.11 2.92 DO (mg/L) 2.65 2.61 2.55 2.47 man, AD DO (mg/L) 8.86	56 57 58 63 69 777 82 90 91 91 94 95 95 0RP (mV) 81 81 81 81 82 82 82 0RP (mV) 133		
(m) 0 0.5 0.9 2 3 4 5 6 7 8 9 Physicod Depth (m) 0 0.9 2.2 3.4 Physicod Depth (m)	(HHMMSS) 121427 121511 121557 121654 121748 121748 121947 122039 122152 122255 122349 122445 chemical Da Time (HHMMSS) 133016 133210 133314 chemical Da	(degrees C) 28.73 27.9 27.82 27.27 26.94 26.57 26.18 25.52 25.34 24.81 24.35 ta from SRS C) 23.33 23.33 23.33 23.29 ta from SRS Temp (degrees C)	(μs/cm2) 2142 2137 2134 2139 2131 2128 2115 2114 2100 2104 2100 SAG-C on 8 SpCond (μs/cm2) 2084 2085 2084 2085 2084 2085 2084 2085	8.66 8.69 8.68 8.44 8.23 8.06 7.83 7.78 7.66 7.66 7.66 7.66 7.56 7.55 7.56 7.55 7.56 /29/04 (fror	135.7 142.3 144.6 132.8 110 89.5 77.7 56.6 51 46 42.7 DO (% sat) 38.1 37.6 36.6 35.5 m Jenny Hick	(mg/L) 8.56 9.11 9.27 8.59 7.16 5.87 5.13 3.78 3.41 3.11 2.92 DO (mg/L) 2.65 2.61 2.55 2.47 man, AD DO (mg/L)	56 57 58 63 69 77 82 90 91 91 94 95 95 0RP (mV) 81 81 81 81 82 82 92 PEQ)		

3.04	8:04:44	28.19	2204	8.6	114.4	8.87	167
4.017	8:06:24	28.13	2204	8.61	113.1	8.78	184
4.953	8:07:35	26.01	2165	8.36	71	5.72	204
6.039	8:08:24	25.11	2163	8.23	54.7	4.49	215
7.075	8:09:38	24.53	2162	8.06	39.4	3.27	213
8.165	8:10:35	24.21	2164	7.97	38.7	3.22	236
8.146	8:11:32	24.16	2160	7.9	39.1	3.26	242
9.028	8:12:24	23.98	2155	7.84	38	3.18	246
10.051	8:13:23	23.8	2160	7.8	32.5	2.73	240
15.082	8:14:58	23.19	2147	7.72	34.4	2.92	234
20.083	8:15:55	22.72	2112	7.69	34.1	2.92	242
25.197	8:16:52	22.47	2112	7.65	31.8	2.74	248
					n Jenny Hick		
Physicol	Inemical Da			29/04 (110)	п зеппу піск	man, AD	
Donth	Time	Temp (dogroop	SpCond			DO	
Depth		(degrees		nU	DO(9/act)		OBD(m)/)
(m) 0.077	(HHMMSS) 11:45:06	C) 29.53	(μs/cm2) 2187	pH 9.42	DO (% sat) 123.3	(mg/L) 9.34	ORP (mV)
		29.53	-	8.43		<u>9.34</u> 9.24	211
1.098	11:45:56		2181	8.42	121.4		267
2.014	11:46:58	28.83	2175	8.43	119.2	9.14	300
3.469	11:47:42	27.67	2155	8.34	104.7	8.2	318
4.328	11:48:30	25.1	2102	8.04	61.8	5.07	344
5.704	11:49:07	24.44	2090	7.93	52.7	4.37	353
6.402	11:50:03	24.18	2089	7.86	47	3.92	360
11.171	11:51:20	22.86	2072	7.82	40.7	3.48	362
Physico	chemical Da		SAG-C on 7	29/04 (fror	n Jenny Hick	man, AD	EQ)
		Temp					
						DO	
-	Time	(degrees	SpCond				
Depth	(HHMMSS)	C)	(µs/cm2)	рН	DO (% sat)	(mg/L)	ORP (mV)
0.147	(HHMMSS) 10:46:55	C) 26.32	(µs/cm2) 2126	7.75	88.9	(mg/L) 7.13	276
0.147 1.001	(HHMMSS) 10:46:55 10:48:51	C) 26.32 25.87	(μs/cm2) 2126 2124	7.75 7.82	88.9 79.4	(mg/L) 7.13 6.42	276 338
0.147 1.001 2.044	(HHMMSS) 10:46:55 10:48:51 10:49:59	C) 26.32 25.87 25.49	(µs/cm2) 2126 2124 2118	7.75 7.82 7.88	88.9 79.4 73	(mg/L) 7.13 6.42 5.94	276 338 346
0.147 1.001 2.044 8.433	(HHMMSS) 10:46:55 10:48:51 10:49:59 10:51:25	C) 26.32 25.87 25.49 25.18	(µs/cm2) 2126 2124 2118 2115	7.75 7.82 7.88 7.93	88.9 79.4 73 64.1	(mg/L) 7.13 6.42 5.94 5.25	276 338 346 348
0.147 1.001 2.044 8.433 5.075	(HHMMSS) 10:46:55 10:48:51 10:49:59 10:51:25 10:52:16	C) 26.32 25.87 25.49 25.18 25.38	(µs/cm2) 2126 2124 2118 2115 2117	7.75 7.82 7.88 7.93 7.98	88.9 79.4 73 64.1 66.5	(mg/L) 7.13 6.42 5.94 5.25 5.42	276 338 346 348 344
0.147 1.001 2.044 8.433 5.075 3.205	(HHMMSS) 10:46:55 10:48:51 10:49:59 10:51:25 10:52:16 10:52:56	C) 26.32 25.87 25.49 25.18 25.38 25.45	(µs/cm2) 2126 2124 2118 2115 2117 2119	7.75 7.82 7.88 7.93 7.98 8.03	88.9 79.4 73 64.1 66.5 68.5	(mg/L) 7.13 6.42 5.94 5.25 5.42 5.58	276 338 346 348 344 344 340
0.147 1.001 2.044 8.433 5.075 3.205 Physicoo	(HHMMSS) 10:46:55 10:48:51 10:49:59 10:51:25 10:52:16 10:52:56 chemical Da	26.32 25.87 25.49 25.18 25.38 25.45 ta from SRS	(µs/cm2) 2126 2124 2118 2115 2117 2119	7.75 7.82 7.88 7.93 7.98 8.03 714/04 (fror	88.9 79.4 73 64.1 66.5	(mg/L) 7.13 6.42 5.94 5.25 5.42 5.58 nt, AZG&	276 338 346 348 344 344 340
0.147 1.001 2.044 8.433 5.075 3.205 Physicoo Depth	(HHMMSS) 10:46:55 10:48:51 10:49:59 10:51:25 10:52:16 10:52:56 chemical Da Temp	C) 26.32 25.87 25.49 25.18 25.38 25.45 ta from SRS SpCond	(µs/cm2) 2126 2124 2118 2115 2117 2119 SAG-A on 7/	7.75 7.82 7.88 7.93 7.98 8.03 714/04 (fror DO	88.9 79.4 73 64.1 66.5 68.5 m Kevin Brigh	(mg/L) 7.13 6.42 5.94 5.25 5.42 5.58 nt, AzG& ORP	276 338 346 348 344 344 340
0.147 1.001 2.044 8.433 5.075 3.205 Physicod Depth (m)	(HHMMSS) 10:46:55 10:48:51 10:49:59 10:51:25 10:52:16 10:52:56 Chemical Da Temp (degrees C)	C) 26.32 25.87 25.49 25.18 25.38 25.45 ta from SRS SpCond (μs/cm2)	(µs/cm2) 2126 2124 2118 2115 2117 2119 SAG-A on 7/ pH	7.75 7.82 7.88 7.93 7.98 8.03 /14/04 (fror DO (mg/L)	88.9 79.4 73 64.1 66.5 68.5 m Kevin Brigh DO (% sat)	(mg/L) 7.13 6.42 5.94 5.25 5.42 5.58 nt, AzG& ORP (mV)	276 338 346 348 344 344 340
0.147 1.001 2.044 8.433 5.075 3.205 Physicod Depth (m) 0.1	(HHMMSS) 10:46:55 10:48:51 10:49:59 10:51:25 10:52:16 10:52:56 Chemical Da Temp (degrees C) 28.20	C) 26.32 25.87 25.49 25.18 25.38 25.45 ta from SRS SpCond (μs/cm2) 2315	(µs/cm2) 2126 2124 2118 2115 2115 2117 2119 SAG-A on 7/ pH 8.6	7.75 7.82 7.88 7.93 7.98 8.03 /14/04 (fror DO (mg/L) 9.4	88.9 79.4 73 64.1 66.5 68.5 m Kevin Brigh DO (% sat) 129	(mg/L) 7.13 6.42 5.94 5.25 5.42 5.58 nt, AzG& ORP (mV) 332	276 338 346 348 344 344 340
0.147 1.001 2.044 8.433 5.075 3.205 Physicod Depth (m) 0.1 1	(HHMMSS) 10:46:55 10:48:51 10:49:59 10:51:25 10:52:16 10:52:56 chemical Da Temp (degrees C) 28.20 28.10	C) 26.32 25.87 25.49 25.18 25.38 25.45 ta from SRS SpCond (μs/cm2) 2315 2313	(µs/cm2) 2126 2124 2118 2115 2117 2119 SAG-A on 7/ PH 8.6 8.6 8.6	7.75 7.82 7.88 7.93 7.98 8.03 /14/04 (fror DO (mg/L) 9.4 9.4	88.9 79.4 73 64.1 66.5 68.5 n Kevin Brigh DO (% sat) 129 129	(mg/L) 7.13 6.42 5.94 5.25 5.42 5.58 ht, AzG& ORP (mV) 332 330	276 338 346 348 344 344 340
0.147 1.001 2.044 8.433 5.075 3.205 Physicoo Depth (m) 0.1 1 2	(HHMMSS) 10:46:55 10:48:51 10:49:59 10:51:25 10:52:16 10:52:56 chemical Da Temp (degrees C) 28.20 28.10 28.07	C) 26.32 25.87 25.49 25.18 25.38 25.45 ta from SRS SpCond (μs/cm2) 2315 2313 2311	(µs/cm2) 2126 2124 2118 2115 2117 2119 SAG-A on 7/ pH 8.6 8.6 8.5	7.75 7.82 7.88 7.93 7.98 8.03 714/04 (fror DO (mg/L) 9.4 9.4 9.5	88.9 79.4 73 64.1 66.5 68.5 m Kevin Brigh DO (% sat) 129 129 129	(mg/L) 7.13 6.42 5.94 5.25 5.42 5.58 nt, AzG& ORP (mV) 332 330 329	276 338 346 348 344 344 340
0.147 1.001 2.044 8.433 5.075 3.205 Physicod Depth (m) 0.1 1 2 3	(HHMMSS) 10:46:55 10:48:51 10:49:59 10:51:25 10:52:16 10:52:56 chemical Da Temp (degrees C) 28.20 28.10 28.07 27.98	C) 26.32 25.87 25.49 25.18 25.38 25.45 ta from SRS SpCond (μs/cm2) 2315 2313 2311 2310	(µs/cm2) 2126 2124 2118 2115 2117 2119 SAG-A on 7/ pH 8.6 8.6 8.5 8.5	7.75 7.82 7.88 7.93 7.98 8.03 7.98 8.03 7.98 8.03 7.98 8.03 7.98 8.03 7.98 9.4 9.4 9.4 9.5 9.4	88.9 79.4 73 64.1 66.5 68.5 m Kevin Brigh DO (% sat) 129 129 129 128	(mg/L) 7.13 6.42 5.94 5.25 5.42 5.58 nt, AZG& ORP (mV) 332 330 329 328	276 338 346 348 344 344 340
0.147 1.001 2.044 8.433 5.075 3.205 Physicot Depth (m) 0.1 1 2 3 3 4	(HHMMSS) 10:46:55 10:48:51 10:49:59 10:51:25 10:52:16 10:52:56 Chemical Da Temp (degrees C) 28.20 28.10 28.07 27.98 26.42	C) 26.32 25.87 25.49 25.18 25.38 25.45 ta from SRS SpCond (µs/cm2) 2315 2313 2311 2310 2272	(µs/cm2) 2126 2124 2118 2115 2117 2119 SAG-A on 7/ PH 8.6 8.6 8.5 8.5 8.4	7.75 7.82 7.88 7.93 7.98 8.03 7.98 8.03 7.98 8.03 7.98 8.03 7.98 9.4 9.4 9.4 9.5 9.4 9.4 9.8	88.9 79.4 73 64.1 66.5 68.5 n Kevin Brigh DO (% sat) 129 129 129 128 129	(mg/L) 7.13 6.42 5.94 5.25 5.42 5.58 nt, AzG& ORP (mV) 332 330 329 328 330	276 338 346 348 344 344 340
0.147 1.001 2.044 8.433 5.075 3.205 Physicod Depth (m) 0.1 1 2 3 3 4 5	(HHMMSS) 10:46:55 10:48:51 10:49:59 10:51:25 10:52:16 10:52:56 Chemical Da Temp (degrees C) 28.20 28.10 28.07 27.98 26.42 24.46	C) 26.32 25.87 25.49 25.18 25.38 25.45 ta from SRS SpCond (μs/cm2) 2315 2313 2311 2310 2272 2260	(µs/cm2) 2126 2124 2118 2115 2117 2119 SAG-A on 7/ PH 8.6 8.6 8.5 8.5 8.5 8.4 8.2	7.75 7.82 7.88 7.93 7.98 8.03 /14/04 (fror DO (mg/L) 9.4 9.4 9.5 9.4 9.5 9.4 9.5 9.4 8.1	88.9 79.4 73 64.1 66.5 68.5 n Kevin Brigh DO (% sat) 129 129 129 129 129 129 129	(mg/L) 7.13 6.42 5.94 5.25 5.42 5.58 nt, AZG& ORP (mV) 332 330 329 328	276 338 346 348 344 344 340
0.147 1.001 2.044 8.433 5.075 3.205 Physicod Depth (m) 0.1 1 2 3 4 5 6	(HHMMSS) 10:46:55 10:48:51 10:49:59 10:51:25 10:52:16 10:52:56 chemical Da Chemical Da 28:20 28:20 28:10 28:07 27.98 26:42 24:46 24:00	C) 26.32 25.87 25.49 25.18 25.38 25.45 ta from SRS SpCond (μs/cm2) 2315 2313 2311 2310 2272 2260 2258	(µs/cm2) 2126 2124 2118 2115 2117 2119 SAG-A on 7/ PH 8.6 8.6 8.6 8.5 8.5 8.4 8.2 7.9	7.75 7.82 7.88 7.93 7.98 8.03 7.98 8.03 7.98 8.03 7.98 8.03 7.98 8.03 7.98 9.4 9.4 9.4 9.4 9.5 9.4 9.4 9.8 8.1 5.8	88.9 79.4 73 64.1 66.5 68.5 m Kevin Brigh DO (% sat) 129 129 129 129 129 129 129	(mg/L) 7.13 6.42 5.94 5.25 5.42 5.58 nt, AzG& ORP (mV) 332 330 329 328 330 329 328 330 329 328	276 338 346 348 344 344 340
0.147 1.001 2.044 8.433 5.075 3.205 Physicod Depth (m) 0.1 1 2 3 4 5 6 7	(HHMMSS) 10:46:55 10:48:51 10:49:59 10:51:25 10:52:16 10:52:56 Chemical Da Temp (degrees C) 28.20 28.10 28.07 27.98 26.42 24.46	C) 26.32 25.87 25.49 25.18 25.38 25.45 ta from SRS SpCond (μs/cm2) 2315 2313 2311 2310 2272 2260	(µs/cm2) 2126 2124 2118 2115 2117 2119 SAG-A on 7/ PH 8.6 8.6 8.5 8.5 8.5 8.4 8.2	7.75 7.82 7.88 7.93 7.98 8.03 /14/04 (fror DO (mg/L) 9.4 9.4 9.5 9.4 9.5 9.4 9.5 9.4 8.1	88.9 79.4 73 64.1 66.5 68.5 n Kevin Brigh DO (% sat) 129 129 129 129 129 129 129	(mg/L) 7.13 6.42 5.94 5.25 5.42 5.58 ht, AzG& ORP (mV) 332 330 329 328 330 329 328 330	276 338 346 348 344 344 340
0.147 1.001 2.044 8.433 5.075 3.205 Physicod Depth (m) 0.1 1 2 3 4 5 6 7 8	(HHMMSS) 10:46:55 10:48:51 10:49:59 10:51:25 10:52:16 10:52:56 chemical Da Chemical Da 28:20 28:20 28:10 28:07 27.98 26:42 24:46 24:00	C) 26.32 25.87 25.49 25.18 25.38 25.45 ta from SRS SpCond (μs/cm2) 2315 2313 2311 2310 2272 2260 2258	(µs/cm2) 2126 2124 2118 2115 2117 2119 SAG-A on 7/ PH 8.6 8.6 8.6 8.5 8.5 8.4 8.2 7.9	7.75 7.82 7.88 7.93 7.98 8.03 7.98 8.03 7.98 8.03 7.98 8.03 7.98 8.03 7.98 9.4 9.4 9.4 9.4 9.5 9.4 9.4 9.8 8.1 5.8	88.9 79.4 73 64.1 66.5 68.5 m Kevin Brigh DO (% sat) 129 129 129 129 129 129 129	(mg/L) 7.13 6.42 5.94 5.25 5.42 5.58 nt, AzG& ORP (mV) 332 330 329 328 330 329 328 330 329 328	276 338 346 348 344 344 340
0.147 1.001 2.044 8.433 5.075 3.205 Physicod Depth (m) 0.1 1 2 3 4 5 6 7	(HHMMSS) 10:46:55 10:48:51 10:49:59 10:51:25 10:52:16 10:52:56 chemical Da Temp (degrees C) 28.20 28.10 28.07 28.20 28.10 28.07 27.98 26.42 24.46 24.00 23.85	 C) 26.32 25.87 25.49 25.18 25.38 25.45 ta from SRS SpCond (μs/cm2) 2315 2313 2311 2310 2272 2260 2258 2260 	(µs/cm2) 2126 2124 2118 2115 2117 2119 SAG-A on 7/ PH 8.6 8.6 8.6 8.5 8.5 8.4 8.2 7.9 7.8	7.75 7.82 7.88 7.93 7.98 8.03 7.98 8.03 7.98 8.03 7.98 8.03 7.98 9.4 9.4 9.4 9.4 9.5 9.4 9.5 9.4 9.5 9.4 9.5 8.1 5.8 5.2	88.9 79.4 73 64.1 66.5 68.5 n Kevin Brigh 129 129 129 129 129 129 129 129 129 129	(mg/L) 7.13 6.42 5.94 5.25 5.42 5.58 nt, AZG& ORP (mV) 332 330 329 328 330 329 328 330 329 328 330 340 341	276 338 346 348 344 344 340
0.147 1.001 2.044 8.433 5.075 3.205 Physicoo Depth (m) 0.1 1 2 3 3 4 5 6 6 7 8	(HHMMSS) 10:46:55 10:48:51 10:49:59 10:51:25 10:52:16 10:52:56 Chemical Da Chemical Da 28.20 28.20 28.10 28.07 27.98 26.42 24.46 24.00 23.85 23.63	C) 26.32 25.87 25.49 25.18 25.38 25.45 ta from SRS SpCond (μs/cm2) 2315 2313 2311 2310 2272 2260 2258 2260 2259	(µs/cm2) 2126 2124 2118 2115 2117 2119 SAG-A on 7/ PH 8.6 8.6 8.5 8.5 8.5 8.4 8.2 7.9 7.8 7.6	7.75 7.82 7.88 7.93 7.98 8.03 7.98 8.03 7.98 8.03 7.98 8.03 7.98 9.4 9.4 9.4 9.4 9.4 9.5 9.4 9.4 9.5 9.4 9.5 9.4 9.5 9.4 9.5 9.4 9.5 9.4 9.5 9.4	88.9 79.4 73 64.1 66.5 68.5 m Kevin Brigh DO (% sat) 129 129 129 129 128 129 128 129 128 129 104 74 66 51	(mg/L) 7.13 6.42 5.94 5.25 5.42 5.58 nt, AZG& ORP (mV) 332 330 329 328 330 329 328 330 329 328 330 340 341 344	276 338 346 348 344 344 340
0.147 1.001 2.044 8.433 5.075 3.205 Physicod Depth (m) 0.1 1 2 3 4 5 6 6 7 8 9	(HHMMSS) 10:46:55 10:48:51 10:49:59 10:51:25 10:52:16 10:52:56 Chemical Da Chemical Da 28.20 28.20 28.10 28.07 27.98 26.42 24.46 24.00 23.85 23.63 23.35	C) 26.32 25.87 25.49 25.18 25.38 25.45 ta from SRS SpCond (µs/cm2) 2315 2313 2311 2310 2272 2260 2258 2260 2259 2258	(µs/cm2) 2126 2124 2118 2115 2117 2119 SAG-A on 7/ PH 8.6 8.6 8.5 8.5 8.5 8.4 8.2 7.9 7.8 7.6 7.5	7.75 7.82 7.88 7.93 7.98 8.03 7.98 8.03 7.98 8.03 7.98 8.03 7.98 8.03 7.98 9.4 9.4 9.4 9.4 9.5 9.4 9.4 9.5 9.4 9.4 9.5 9.4 9.5 9.4 9.5 9.4 9.5 9.4 9.5 9.4 9.5 9.4 9.5 9.4 9.5 9.4 9.5 9.4 9.5 9.4 9.5 9.4 9.5 9.4 9.5 9.4 9.5 9.4 9.5 9.4 9.5 9.5 9.4 9.5 9.5 9.4 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	88.9 79.4 73 64.1 66.5 68.5 n Kevin Brigh DO (% sat) 129 129 129 129 129 128 129 128 129 104 74 66 51 29	(mg/L) 7.13 6.42 5.94 5.25 5.42 5.58 nt, AzG& ORP (mV) 332 330 329 328 330 329 328 330 329 328 330 341 341 344 347	276 338 346 348 344 344 340
0.147 1.001 2.044 8.433 5.075 3.205 Physicou Depth (m) 0.1 1 2 3 4 5 6 7 8 9 10	(HHMMSS) 10:46:55 10:48:51 10:49:59 10:51:25 10:52:16 10:52:56 chemical Da Temp (degrees C) 28.20 28.10 28.20 28.10 28.07 27.98 26.42 24.46 24.00 23.85 23.63 23.15 22.79	C) 26.32 25.87 25.49 25.18 25.38 25.45 ta from SRS SpCond (µs/cm2) 2315 2313 2311 2310 2272 2260 2258 2260 2258 2255 2252	(µs/cm2) 2126 2124 2118 2115 2117 2119 SAG-A on 7/ PH 8.6 8.6 8.6 8.5 8.5 8.4 8.2 7.9 7.8 7.6 7.5 7.4 7.4	7.75 7.82 7.88 7.93 7.98 8.03 7.98 8.03 7.98 8.03 7.98 8.03 7.98 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.5 9.4 9.4 9.5 9.4 9.4 9.5 9.4 9.5 5.2 4.0 2.3 0.7 0.3	88.9 79.4 73 64.1 66.5 68.5 n Kevin Brigh DO (% sat) 129 129 129 129 129 129 129 129 129 129	(mg/L) 7.13 6.42 5.94 5.25 5.42 5.58 nt, AzG& ORP (mV) 332 330 329 328 330 329 328 330 329 328 330 342 341 341 344 347 347 315	276 338 346 348 344 344 340
0.147 1.001 2.044 8.433 5.075 3.205 Physicod Depth (m) 0.1 1 2 3 4 5 6 7 8 9 10 12 14	(HHMMSS) 10:46:55 10:48:51 10:49:59 10:51:25 10:52:16 10:52:56 chemical Da chemical Da 28 .20 28.20 28.20 28.10 28.20 28.10 28.27 23.85 23.63 23.35 23.15 22.79 22.50	 C) 26.32 25.87 25.49 25.18 25.38 25.45 ta from SRS SpCond (μs/cm2) 2315 2313 2311 2310 2272 2260 2258 2260 2259 2258 2255 2252 2243 	(µs/cm2) 2126 2124 2118 2115 2117 2119 SAG-A on 7/ SAG-A on 7/ PH 8.6 8.6 8.6 8.5 8.5 8.4 8.2 7.9 7.8 7.6 7.5 7.4 7.4 7.4	7.75 7.82 7.88 7.93 7.98 8.03 7.98 8.03 7.98 8.03 7.98 8.03 7.98 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.5 9.4 9.4 9.5 9.4 9.4 9.8 8.1 5.8 5.2 4.0 2.3 0.7 0.3 0.6	88.9 79.4 73 64.1 66.5 68.5 m Kevin Brigh DO (% sat) 129 129 129 129 129 129 129 129 129 129	(mg/L) 7.13 6.42 5.94 5.25 5.42 5.58 nt, AZG& ORP (mV) 332 330 329 328 330 329 328 330 329 328 330 341 341 344 347 347 315 316	276 338 346 348 344 344 340
0.147 1.001 2.044 8.433 5.075 3.205 Physicod Depth (m) 0.1 1 2 3 4 5 6 7 8 9 10 12 14 16	(HHMMSS) 10:46:55 10:48:51 10:49:59 10:51:25 10:52:16 10:52:56 Chemical Da Chemical Da 28.20 28.20 28.20 28.10 28.20 28.20 28.20 28.20 28.20 28.20 28.20 28.20 28.20 28.30 23.63 23.63 23.35 23.15 22.79 22.50 22.32	C) 26.32 25.87 25.49 25.18 25.38 25.45 ta from SRS SpCond (µs/cm2) 2315 2313 2311 2310 2272 2260 2258 2260 2258 2260 2259 2258 2255 2252 2243 2234	(µs/cm2) 2126 2124 2118 2115 2117 2119 SAG-A on 7/ PH 8.6 8.6 8.5 8.5 8.5 8.4 8.2 7.9 7.8 7.6 7.5 7.4 7.4 7.4 7.4 7.4	7.75 7.82 7.88 7.93 7.98 8.03 7.98 8.03 7.98 8.03 7.98 8.03 7.98 9.4 9.4 9.4 9.4 9.4 9.4 9.5 9.4 9.4 9.5 9.4 9.5 9.4 9.5 9.4 9.5 9.4 9.5 9.4 9.5 9.4 0.5 9.4 0.5 9.4 0.5 0.7 0.3 0.7 0.3 0.6 0.9	88.9 79.4 73 64.1 66.5 68.5 n Kevin Brigh DO (% sat) 129 129 129 129 129 129 129 129 129 129	(mg/L) 7.13 6.42 5.94 5.25 5.42 5.58 nt, AZG& ORP (mV) 332 330 329 328 330 329 328 330 329 328 330 340 341 344 344 347 347 347 315 316 317	276 338 346 348 344 344 340
0.147 1.001 2.044 8.433 5.075 3.205 Physicou Depth (m) 0.1 1 2 3 4 5 6 7 8 9 10 12 14 16 18	(HHMMSS) 10:46:55 10:48:51 10:49:59 10:51:25 10:52:16 10:52:56 Chemical Da Chemical Da 28.20 28.20 28.20 28.10 28.20 28.20 28.20 28.20 28.20 28.20 28.20 28.20 28.30 23.63 23.63 23.63 23.15 22.79 22.50 22.26	C) 26.32 25.87 25.49 25.18 25.38 25.45 ta from SRS SpCond (µs/cm2) 2315 2313 2311 2310 2272 2260 2258 2260 2258 2260 2259 2258 2255 2252 2243 2234 2235	(µs/cm2) 2126 2124 2118 2115 2117 2119 SAG-A on 7/ PH 8.6 8.6 8.5 8.5 8.5 8.4 8.2 7.9 7.8 7.6 7.5 7.4 7.4 7.4 7.4 7.4 7.4	7.75 7.82 7.88 7.93 7.98 8.03 7.98 8.03 7.98 8.03 7.98 8.03 7.98 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.5 9.4 9.4 9.5 9.4 9.4 9.5 9.4 9.4 9.5 9.4 9.5 9.4 9.5 9.4 0.5 9.4 0.5 9.4 0.5 0.5 0.1 0.5 0.5 0.5 1.1	88.9 79.4 73 64.1 66.5 68.5 n Kevin Brigh 00 (% sat) 129 129 129 129 129 129 129 129 129 129	(mg/L) 7.13 6.42 5.94 5.25 5.42 5.58 nt, AzG& ORP (mV) 332 330 329 328 330 329 328 330 341 344 341 344 347 347 315 316 317 318	276 338 346 348 344 344 340
0.147 1.001 2.044 8.433 5.075 3.205 Physicod Depth (m) 0.1 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20	(HHMMSS) 10:46:55 10:48:51 10:49:59 10:51:25 10:52:16 10:52:56 Chemical Da 28.20 28.20 28.20 28.20 28.10 28.07 27.98 26.42 24.46 24.00 23.85 23.63 23.63 23.35 23.15 22.79 22.50 22.32 22.26 22.13	C) 26.32 25.87 25.49 25.18 25.38 25.45 ta from SRS SpCond (µs/cm2) 2315 2313 2311 2310 2272 2260 2258 2260 2258 2259 2258 2255 2252 2243 2234 2235 2226	(µs/cm2) 2126 2124 2118 2115 2117 2119 SAG-A on 7/ PH 8.6 8.6 8.5 8.5 8.4 8.5 8.4 8.2 7.9 7.8 7.6 7.5 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4	7.75 7.82 7.88 7.93 7.98 8.03 7.98 8.03 7.98 8.03 7.98 8.03 7.98 8.03 7.98 9.4 9.4 9.4 9.4 9.4 9.5 9.4 9.4 9.5 9.5 9.4 9.5 9.4 9.5 9.4 9.5 9.4 9.5 9.4 9.5 9.4 9.5 9.4 9.5 9.4 9.5 9.4 9.5 9.4 9.5 9.4 9.5 9.4 9.5 9.4 9.5 9.4 9.5 9.5 9.4 9.5 9.4 9.5 9.4 9.5 9.4 9.5 9.4 9.5 9.5 9.4 9.5 9.4 9.5 9.4 9.5 9.4 9.5 9.4 9.5 9.5 9.4 9.5 9.4 9.5 9.4 9.5 9.5 9.4 9.5 9.5 9.4 9.5 9.5 9.4 9.5 9.5 9.4 9.5 9.5 9.4 9.5 9.5 9.4 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	88.9 79.4 73 64.1 66.5 68.5 n Kevin Brigh 00 (% sat) 129 129 129 129 129 129 129 129 129 129	(mg/L) 7.13 6.42 5.94 5.25 5.42 5.58 nt, AzG& ORP (mV) 332 330 329 328 330 329 328 330 329 328 330 341 341 341 341 344 347 347 347 347 315 316 317 318 318	276 338 346 348 344 344 340
0.147 1.001 2.044 8.433 5.075 3.205 Physicod Depth (m) 0.1 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22	(HHMMSS) 10:46:55 10:48:51 10:49:59 10:51:25 10:52:16 10:52:56 Chemical Da Temp (degrees C) 28.20 28.20 28.10 28.07 27.98 26.42 24.46 24.00 23.85 23.63 23.63 23.35 23.15 22.79 22.50 22.26 22.13 22.11	C) 26.32 25.87 25.49 25.18 25.38 25.45 ta from SRS SpCond (μs/cm2) 2315 2313 2311 2310 2272 2260 2258 2260 2258 2260 2259 2258 2255 2252 2252 2243 2234 2234 2224	(µs/cm2) 2126 2124 2118 2115 2117 2119 SAG-A on 7/ PH 8.6 8.5 8.5 8.5 8.4 8.5 8.5 8.4 8.5 7.9 7.8 7.6 7.5 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4	7.75 7.82 7.88 7.93 7.98 8.03 7.98 8.03 7.98 8.03 7.98 8.03 7.98 8.03 7.98 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4	88.9 79.4 73 64.1 66.5 68.5 n Kevin Brigh DO (% sat) 129 129 129 129 129 129 129 129 129 129	(mg/L) 7.13 6.42 5.94 5.25 5.42 5.58 nt, AzG& ORP (mV) 332 330 329 328 330 329 328 330 341 344 344 344 347 347 315 316 317 318 318 318	276 338 346 348 344 344 340
0.147 1.001 2.044 8.433 5.075 3.205 Physicod Depth (m) 0.1 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24	(HHMMSS) 10:46:55 10:48:51 10:49:59 10:51:25 10:52:16 10:52:56 chemical Da chemical Da 28 .20 28.20 28.10 28.20 22.32 22.20 22.20 22.11 22.02	C) 26.32 25.87 25.49 25.18 25.38 25.45 ta from SRS SpCond (μs/cm2) 2315 2313 2311 2310 2272 2260 2258 2260 2258 2260 2259 2258 2255 2252 2252 2243 2234 2235 2226 2224 2224	(µs/cm2) 2126 2124 2118 2115 2117 2119 SAG-A on 7 PH 8.6 8.6 8.6 8.5 8.4 8.2 7.9 7.8 7.6 7.5 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4	7.75 7.82 7.88 7.93 7.98 8.03 7.98 8.03 7.98 8.03 7.98 8.03 7.98 8.03 7.98 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.5 9.4 9.4 9.5 9.4 9.4 9.5 9.4 9.4 9.5 9.5 9.4 9.5 9.5 9.4 9.5 9.5 9.4 9.5 9.5 9.4 9.5 9.5 9.4 9.5 9.5 9.4 9.5 9.5 9.4 9.5 9.5 9.4 9.5 9.5 9.4 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	88.9 79.4 73 64.1 66.5 68.5 m Kevin Brigh DO (% sat) 129 129 129 129 129 129 129 129 129 129	(mg/L) 7.13 6.42 5.94 5.25 5.42 5.58 nt, AZG& ORP (mV) 332 330 329 328 330 329 328 330 329 328 330 341 344 344 347 347 347 347 347 347	276 338 346 348 344 344 340
0.147 1.001 2.044 8.433 5.075 3.205 Physicol Depth (m) 0.1 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 26	(HHMMSS) 10:46:55 10:48:51 10:49:59 10:51:25 10:52:16 10:52:56 chemical Da (degrees C) 28.20 28.10 28.20 28.10 28.20 28.20 28.20 28.20 28.20 28.20 28.30 23.63 23.63 23.63 23.63 23.63 23.63 23.55 23.63 23.55 23.15 22.79 22.50 22.32 22.26 22.11 22.02 21.97	 C) 26.32 25.87 25.49 25.18 25.38 25.45 ta from SRS SpCond (μs/cm2) 2315 2313 2311 2310 2272 2260 2258 2260 2258 2255 2252 2243 2234 2235 2226 2243 2224 2226 224 2224 2220 2217 	(µs/cm2) 2126 2124 2118 2115 2117 2119 SAG-A on 7/ SAG-A on 7/ PH 8.6 8.6 8.5 8.5 8.5 8.4 8.2 7.9 7.8 7.9 7.8 7.6 7.5 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4	7.75 7.82 7.88 7.93 7.98 8.03 7.98 8.03 7.98 8.03 7.98 8.03 7.98 8.03 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4	88.9 79.4 73 64.1 66.5 68.5 m Kevin Brigh DO (% sat) 129 129 129 129 129 129 129 129 129 129	(mg/L) 7.13 6.42 5.94 5.25 5.42 5.58 nt, AZG& ORP (mV) 332 330 329 328 330 329 328 330 329 328 330 340 341 344 344 347 347 347 347 347 347	276 338 346 348 344 344 340
0.147 1.001 2.044 8.433 5.075 3.205 Physicod Depth (m) 0.1 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24	(HHMMSS) 10:46:55 10:48:51 10:49:59 10:51:25 10:52:16 10:52:56 chemical Da chemical Da 28 .20 28.20 28.10 28.20 22.32 22.20 22.20 22.11 22.02	C) 26.32 25.87 25.49 25.18 25.38 25.45 ta from SRS SpCond (μs/cm2) 2315 2313 2311 2310 2272 2260 2258 2260 2258 2260 2258 2255 2252 2252 2243 2234 2235 2226 2224 2224 2220	(µs/cm2) 2126 2124 2118 2115 2117 2119 SAG-A on 7 PH 8.6 8.6 8.6 8.5 8.4 8.2 7.9 7.8 7.6 7.5 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4	7.75 7.82 7.88 7.93 7.98 8.03 7.98 8.03 7.98 8.03 7.98 8.03 7.98 8.03 7.98 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.5 9.4 9.4 9.5 9.4 9.4 9.5 9.4 9.4 9.5 9.5 9.4 9.5 9.5 9.4 9.5 9.5 9.4 9.5 9.5 9.4 9.5 9.5 9.4 9.5 9.5 9.4 9.5 9.5 9.4 9.5 9.5 9.4 9.5 9.5 9.4 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	88.9 79.4 73 64.1 66.5 68.5 m Kevin Brigh DO (% sat) 129 129 129 129 129 129 129 129 129 129	(mg/L) 7.13 6.42 5.94 5.25 5.42 5.58 nt, AZG& ORP (mV) 332 330 329 328 330 329 328 330 329 328 330 341 344 344 347 347 347 347 347 315 316 317 318 318 318 318	276 338 346 348 344 344 340

	chemical Dat	a from SRS	AG-B on 7	/14/04 (fro	m Kevin Brig	ht. AzG&
Depth	Temp	Sp. Cond.		DO		ORP
(m)	(degrees C)	(µs/cm2)	pН	(mg/L)		
0	28.79	2285	8.5	9.4	130) 334
1	28.69	2285	8.5	9.4	130) 328
2	27.88	2276	8.5	9.0	122	
3	26.50	2252	8.3	7.5		
4	24.81	2227	8.0	6.1	78	
5	24.01	2214	7.9	5.4	68	
6	23.33	2204	7.8	4.8	59	
7	22.99	2198	7.8	4.4	55	
8	22.72	2196	7.7	4.2	52	
9	22.46	2191	7.7	4.1	50	
10	22.04	2182	7.7	3.7		
11	21.66	2177	7.7	3.4	42	
	chemical Dat		AG-C on 7			
Depth	Temp	SpCond		DO		ORP
(m)	(degrees C)	(µs/cm2)	pH	(mg/L)		
0.1	26.62 25.95	2247 2242	8.2	7.8		
<u>1</u> 2	25.95	2242	<u>8.2</u> 8.2	7.6		
2 3	25.85	2246	8.2	7.5		
<u> </u>	25.80	2244 2243	8.2	7.1		
<u> </u>	25.74	2243	8.2	6.9		
6	25.71	2242	8.2	6.9		
7	25.67	2241	8.2	6.8		
8	25.67	2242	8.2	6.7		
9	25.65	2243	8.2	6.5		
10	25.64	2243	8.2	6.6		
	chemical Dat					
Depth	Temp	Sp.Cond	рН		(% sat.)	ORP
(m)	(degrees C)	(µS/cm2)		mg/L)		(mV)_
0.5	25.26	2298	8.7	9.3	123	306
1.4	25.21	2295	8.7	9.1	120	305
				0.1		000
2.1		2293				
2.1	24.75	2293	8.7	9.3	121	305
2.9	24.75 24.62	2291	8.7 8.7	9.3 9.2	121 120	305 305
2.9 4.4	24.75 24.62 24.42	2291 2285	8.7 8.7 8.6	9.3 9.2 8.7	121 120 113	305 305 306
2.9	24.75 24.62	2291	8.7 8.7	9.3 9.2	121 120	305 305
2.9 4.4	24.75 24.62 24.42	2291 2285	8.7 8.7 8.6	9.3 9.2 8.7	121 120 113	305 305 306
2.9 4.4 5.1 8	24.75 24.62 24.42 23.24 22.01	2291 2285 2261 2244	8.7 8.7 8.6 8.5 8.0	9.3 9.2 8.7 7.8 2.7	121 120 113 99 34	305 305 306 310 326
2.9 4.4 5.1 8 10	24.75 24.62 24.42 23.24 22.01 21.42	2291 2285 2261 2244 2236	8.7 8.7 8.6 8.5 8.0 7.8	9.3 9.2 8.7 7.8 2.7 1.4	121 120 113 99 34 17	305 305 306 310 326 329
2.9 4.4 5.1 8 10 15	24.75 24.62 24.42 23.24 22.01 21.42 20.78	2291 2285 2261 2244 2236 2233	8.7 8.7 8.6 8.5 8.0 7.8 7.6	9.3 9.2 8.7 7.8 2.7 1.4 1.1	121 120 113 99 34 17 13	305 305 306 310 326 329 332
2.9 4.4 5.1 8 10	24.75 24.62 24.42 23.24 22.01 21.42 20.78 19.88	2291 2285 2261 2244 2236 2233 2222	8.7 8.7 8.6 8.5 8.0 7.8 7.6 7.6	9.3 9.2 8.7 7.8 2.7 1.4 1.1 1.8	121 120 113 99 34 17 13 22	305 305 306 310 326 329 332 332
2.9 4.4 5.1 8 10 15	24.75 24.62 24.42 23.24 22.01 21.42 20.78	2291 2285 2261 2244 2236 2233	8.7 8.7 8.6 8.5 8.0 7.8 7.6	9.3 9.2 8.7 7.8 2.7 1.4 1.1	121 120 113 99 34 17 13	305 305 306 310 326 329 332
2.9 4.4 5.1 8 10 15 20.9 30	24.75 24.62 24.42 23.24 22.01 21.42 20.78 19.88 18.78	2291 2285 2261 2244 2236 2233 2222 2221	8.7 8.7 8.6 8.5 8.0 7.8 7.6 7.6 7.5	9.3 9.2 8.7 7.8 2.7 1.4 1.1 1.8 0.7	121 120 113 99 34 17 13 22 8	305 305 306 310 326 329 332 332 332
2.9 4.4 5.1 8 10 15 20.9 30 Physico	24.75 24.62 24.42 23.24 22.01 21.42 20.78 19.88 18.78 chemical Dat	2291 2285 2261 2244 2236 2233 2222 2221 a from SRS	8.7 8.7 8.6 8.5 8.0 7.8 7.6 7.6 7.6 7.5 AG-B on 6	9.3 9.2 8.7 7.8 2.7 1.4 1.1 1.8 0.7 /10/04 (fro	121 120 113 99 34 17 13 22 8 m Kevin Briç	305 305 306 310 326 329 332 332 332 334 ht, AzG&
2.9 4.4 5.1 8 10 15 20.9 30 Physico Depth	24.75 24.62 24.42 23.24 22.01 21.42 20.78 19.88 18.78 chemical Dat Temp	2291 2285 2261 2244 2236 2233 2222 2221 a from SRS Sp.Cond	8.7 8.7 8.6 8.5 8.0 7.8 7.6 7.6 7.5 AG-B on 6 pH	9.3 9.2 8.7 7.8 2.7 1.4 1.1 1.8 0.7 /10/04 (fro	121 120 113 99 34 17 13 22 8	305 305 306 310 326 329 332 332 332 334 9ht, AzG&
2.9 4.4 5.1 8 10 15 20.9 30 Physico	24.75 24.62 24.42 23.24 22.01 21.42 20.78 19.88 18.78 Chemical Dat Temp (degrees C)	2291 2285 2261 2244 2236 2233 2222 2221 a from SRS Sp.Cond (μS/cm2)	8.7 8.7 8.6 8.5 8.0 7.8 7.6 7.6 7.5 AG-B on 6	9.3 9.2 8.7 7.8 2.7 1.4 1.1 1.8 0.7 /10/04 (fro mg/L)	121 120 113 99 34 17 13 22 8 m Kevin Brig OO (% Sat.)	305 305 306 310 326 329 332 332 332 334 9ht, AzG&
2.9 4.4 5.1 8 10 15 20.9 30 Physico Depth (m) 0	24.75 24.62 24.42 23.24 22.01 21.42 20.78 19.88 18.78 chemical Dat Temp (degrees C) 26.50	2291 2285 2261 2244 2236 2233 2222 2221 a from SRS Sp.Cond (μS/cm2) 2292	8.7 8.7 8.6 8.5 8.0 7.8 7.6 7.6 7.6 7.5 AG-B on 6 9H (1 8.5	9.3 9.2 8.7 7.8 2.7 1.4 1.1 1.8 0.7 /10/04 (fromog/L) 8.2	121 120 113 99 34 17 13 22 8 m Kevin Brig 00 (% Sat.)	305 305 306 310 326 329 332 332 332 334 ORP (mV) 340
2.9 4.4 5.1 8 10 15 20.9 30 Physico Depth (m) 0 1	24.75 24.62 24.42 23.24 22.01 21.42 20.78 19.88 18.78 Chemical Dat Chemical Dat (degrees C) 26.50 25.90	2291 2285 2261 2244 2236 2233 2222 2221 a from SRS Sp.Cond (μS/cm2) 2292 2292	8.7 8.7 8.6 8.5 8.0 7.8 7.6 7.6 7.6 7.5 AG-B on 6 PH (1 8.5 8.6	9.3 9.2 8.7 7.8 2.7 1.4 1.1 1.8 0.7 /10/04 (fromog/L) 8.2 8.5	121 120 113 99 34 17 13 22 8 00 (% Sat.) 110 114	305 305 306 310 326 329 332 332 332 334 ht, AzG& ORP (mV) 340 336
2.9 4.4 5.1 8 10 15 20.9 30 Physico Depth (m) 0 1 2	24.75 24.62 24.42 23.24 22.01 21.42 20.78 19.88 18.78 chemical Dat Temp (degrees C) 26.50 25.90 25.60	2291 2285 2261 2244 2236 2233 2222 2221 a from SRS Sp.Cond (μS/cm2) 2292 2292 2292 2292	8.7 8.7 8.6 8.5 8.0 7.8 7.6 7.6 7.6 7.5 AG-B on 6 9H (1 8.5 8.6 8.6	9.3 9.2 8.7 7.8 2.7 1.4 1.1 1.8 0.7 /10/04 (fromog/L) 8.2 8.5 8.5 8.7	121 120 113 99 34 17 13 22 8 00 (% Sat.) 110 114 115	305 305 306 310 326 329 332 332 334 334 ORP (mV) 340 336 332
2.9 4.4 5.1 8 10 15 20.9 30 Physico Depth (m) 0 1	24.75 24.62 24.42 23.24 22.01 21.42 20.78 19.88 18.78 Chemical Dat Chemical Dat (degrees C) 26.50 25.90	2291 2285 2261 2244 2236 2233 2222 2221 a from SRS Sp.Cond (μS/cm2) 2292 2292	8.7 8.7 8.6 8.5 8.0 7.8 7.6 7.6 7.6 7.5 AG-B on 6 PH (1 8.5 8.6	9.3 9.2 8.7 7.8 2.7 1.4 1.1 1.8 0.7 /10/04 (fromog/L) 8.2 8.5	121 120 113 99 34 17 13 22 8 00 (% Sat.) 110 114	305 305 306 310 326 329 332 332 332 334 ht, AzG& ORP (mV) 340 336
2.9 4.4 5.1 8 10 15 20.9 30 Physico Depth (m) 0 1 2	24.75 24.62 24.42 23.24 22.01 21.42 20.78 19.88 18.78 chemical Dat Temp (degrees C) 26.50 25.90 25.60	2291 2285 2261 2244 2236 2233 2222 2221 a from SRS Sp.Cond (μS/cm2) 2292 2292 2292 2292	8.7 8.7 8.6 8.5 8.0 7.8 7.6 7.6 7.6 7.5 AG-B on 6 9H (1 8.5 8.6 8.6	9.3 9.2 8.7 7.8 2.7 1.4 1.1 1.8 0.7 /10/04 (fromog/L) 8.2 8.5 8.5 8.7	121 120 113 99 34 17 13 22 8 00 (% Sat.) 110 114 115	305 305 306 310 326 329 332 332 334 334 ORP (mV) 340 336 332
2.9 4.4 5.1 8 10 15 20.9 30 Physico Depth (m) 0 1 2 3 3 5	24.75 24.62 24.42 23.24 22.01 21.42 20.78 19.88 18.78 chemical Dat Temp (degrees C) 26.50 25.90 25.60 25.09 24.24	2291 2285 2261 2244 2236 2233 2222 2221 a from SRS Sp.Cond (μS/cm2) 2292 2292 2292 2292 2292 2292 2285 2280 2276	8.7 8.7 8.6 8.5 8.0 7.8 7.6 7.6 7.6 7.5 AG-B on 6 PH (1 8.5 8.6 8.6 8.6 8.5 8.6	9.3 9.2 8.7 7.8 2.7 1.4 1.1 1.8 0.7 /10/04 (fromog/L) 8.2 8.5 8.7 8.3 7.1	121 120 113 99 34 17 13 22 8 00 (% Sat.) 110 114 115 107 91	305 305 306 310 326 329 332 332 334 334 ORP (mV) 340 336 332 331 333
2.9 4.4 5.1 8 10 15 20.9 30 Physico Depth (m) 0 1 1 2 3	24.75 24.62 24.42 23.24 22.01 21.42 20.78 19.88 18.78 Chemical Dat (degrees C) 26.50 25.90 25.60 25.09	2291 2285 2261 2244 2236 2233 2222 2221 a from SRS Sp.Cond (μS/cm2) 2292 2292 2292 2292 2285 2280	8.7 8.7 8.6 8.5 8.0 7.8 7.6 7.6 7.6 7.5 AG-B on 6 9H (1 8.5 8.6 8.6 8.6 8.5	9.3 9.2 8.7 7.8 2.7 1.4 1.1 1.8 0.7 /10/04 (fromog/L) 8.2 8.5 8.7 8.3	121 120 113 99 34 17 13 22 8 00 (% Sat.) 110 114 115 107	305 305 306 310 326 329 332 332 332 334 9ht, AzG& ORP (mV) 340 336 332 331

	Time	Temp	SpCond			DO	ORP
Depth (m)	(MMHHSS)	(degrees C)	(µS/cm2)	рН	DO(% sat)	(mg/L)	(mV)
0.1	101819	23.21	2303	8.53	107	7.46	153
0.5	101906	23.17	2302	8.55	108	7.53	145
0.9	101937	23.05	2302	8.56	108.6	7.59	142
1.9	102018	22.6	2298	8.47	100	7.05	142
3	102104	22.03	2295	8.36	93.4	6.66	144
4	102142	21.8	2295	8.31	87.5	6.26	145
5	102221	21.59	2294	8.25	81.3	5.84	146
6	102255	21.19	2295	8.11	74.5	5.39	149
7	102335	20.55	2291	7.92	61.4	4.5	154
7.9	102705	20.34	2289	7.83	55.9	4.11	153
8.9	102752	20.27	2287	7.81	54.9	4.05	154
10.8	102835	20.16	2285	7.77	52.6	3.89	155
11.8	102919	20.13	2288	7.77	51.5	3.81	155
13.1	103049	19.93	2287	7.72	48.8	3.63	155
13.9	103135	19.84	2287	7.7	47.6	3.54	156
15	103221	19.79	2287	7.7	47.1	3.51	159
16	103301	19.75	2288	7.7	46.7	3.48	156
17	103340	19.73	2287	7.69	47	3.5	157
18.8	103659	19.52	2284	7.65	44.9	3.36	157
19.7	104943	19.65	2287	7.69	46.5	3.47	137
21.1	105223	19.53	2286	7.66	45.8	3.42	142
22	105315	19.49	2288	7.64	42.8	3.21	144
23.3	105414	19.45	2288	7.65	42.8	3.21	145
22.2	105449	19.5	2291	7.67	43.4	3.25	146
25.2	105545	19.41	2290	7.65	42.8	3.21	147
25.8	105629	19.39	2286	7.63	42	3.15	149
27	105734	19.33	2286	7.62	41.3	3.11	151
27.9	105811	19.29	2287	7.62	41.6	3.13	149
29.3	105853	19.12	2289	7.64	41.8	3.15	150
29.9	105939	19.09	2289	7.63	42.1	3.18	150
31.1	110048	19.1	2289	7.64	42.1	3.18	151
31.9	110153	19.05	2290	7.63	42.5	3.21	151
33.3	110301	19.04	2291	7.63	41.8	3.16	109
34	110348	19.01	2291	7.63	41.6	3.15	116

Hypolimnetic DO levels in Saguaro for the summers of 2002, 2003, and 2004.



Summary of Fit

Moans	
Observations (or Sum Wgts)	53
Mean of Response	0.384151

weans				
Level	Mean	Std Error	Lower 95%	Upper 95%
Summer 02	0.528182	0.02595	0.47607	0.58030
Summer 03	0.340667	0.03142	0.27755	0.40378
Summer 04	0.226875	0.03043	0.16576	0.28799

Hypolimnetic ORP (in mV) levels in Saguaro for the summers of 2002, 2003, and 2004.

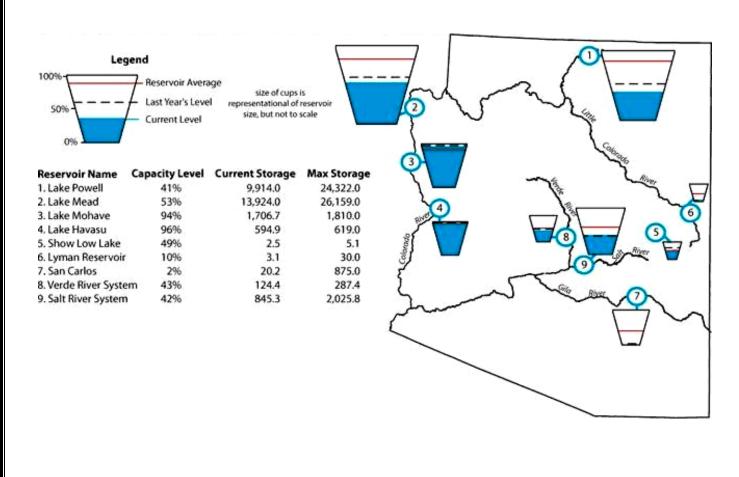
Summary of Fit

Mean of Response		-101.6	79			
Observations (or Sum W		53				
Analysis of Variance						
Source	DF	F Ratio	Prob > F			
Sampling_Period	2	9.0003	0.0005			
Error	50					
C. Total	52					

Means for Oneway Anova

Level	Mean	Std Error	Lower 95%	Upper 95%
Summer 02	-63.409	15.288	-94.12	-32.70
Summer 03	-92.933	18.515	-130.12	-55.75
Summer 04	-162.500	17.927	-198.51	-126.49

Climate and Drought


Changes in the upper air flow that was very beneficial to the Northwestern U.S. (i.e. stormy and wet) unfortunately meant that the Arizona monsoon came to an abrupt halt. The monsoon season, overall, was sub-par to mediocre at best and brought little relief to the ongoing drought. The high pressure system that normally develops over the Four Corners region causing warm, wet air to enter the state was routinely knocked out of place by storms tracking in from the northwest. The only good news is that this translated into lower than expected sediment, nutrient, and metal loading from burned areas in the Rodeo-Chedeski Fire into the Salt River, Roosevelt, and downstream reservoirs and from the Willow Fire into Verde River drainages going into Horseshoe and Bartlett reservoirs. This situation may change with winter rains or spring

snowmelt but this precipitation is not nearly as erosive as monsoonal rains.

Much of the moisture that constitutes the Arizona monsoon. moved into far eastern New Mexico over the summer and as a result, this area is no longer considered to be in a short-term drought. There is still what appears to be, the onset of a weak El Nino in the Pacific which may persist over the next several months. Most climate predictions are anticipating a slightly increased probability of wetter-than-average conditions in Arizona this winter. Hopefully, this will bring some relief from longterm drought. However, El Nino's only increase the probability of precipitation and generally not viewed by climatologists as a means to end drought.

Reservoirs on the Upper Colorado River continue to decline. Lake Powell is at its lowest level since May 1970 (less than 10 million acre feet) and Lake Mead is at its lowest level since June 1964 (less than 14 million acre feet). This may have consequences on water quality entering the state. Obviously, the drought will have impacts on dilution and flushing which may impact pollutants, such as perchlorate. However, cleanup efforts at the source may mitigate any potential increase of perchlorate through decreased dilution and flushing. Other potential water quality concerns associated with the Colorado River and drought are increases in algal biomass and salinity. Increases in algal biomass may translate into higher DOC and THM precursors in the years to come if the drought persists

Arizona reservoir levels as of July 2004 (from the UofA's Institute for the Study of Planet Earth, Climate Assessment for the Southwest project, <u>http://www.ispe.arizona.edu/climas/index.shtml</u>)

Other Watershed/Water Quality-Related Projects

Quantifying Potential Endocrine Disruption in Effluent Dominated and Effluent Dependent Waters Within Arizona: Fish as Habitat Assessment Biomarkers

In the arid southwest, effluent dominated waters (EDW's) are becoming increasingly prevalent. Due to the finite nature of water in the area, this trend is expected to increase dramatically over the next few years to decades. These areas will naturally become increasingly important as habitat for native fish and wildlife species some of which are threatened with extinction due to massive water withdraws from critical habitat. The importance of EDW's as both habitat for native species and as a future potential drinking water source is no longer in question, yet, very little research has been done on waterbodies solely within the state designated as "aquatic and wildlife, effluent dependant.

Determination of endocrine disruption within EDW's or other waterbodies has often been nebulous with no range of values between "good" and "bad". This has often been due to low sample sizes covering relatively small geographic regions within the arid or semi-arid western U.S.; municipalities, utilities, and regulatory agencies need a comprehensive framework, with data obtained wholly within the state, upon which sound managerial decisions regarding endocrine disruption, and overall ecosystem health, within EDW's can be formulated. With EDW's becoming increasingly important components of the landscape, the need to understand how they may differ from "natural" aquatic ecosystems also becomes increasingly important. Endocrine disruption may play an important

role in determining nutrient and energy cycling within EDW's.

Endocrine disrupting compounds may reduce the reproductive potential of fish populations by causing intersex, decreased gonad size, and altered sex ratio. Intersex is a condition where both male and female gonadal tissue is present in the same male gonad and is a condition commonly found in fish exposed to sewage effluent

Discharge from municipal sewage treatment plants (STP's) may serve as primary pathways in which endocrine disrupting compounds are introduced into the aquatic environment (Desbrow et al. 1998. Ternes et al. 1999). Water discharged from STP's are generally believed to be higher in some of the more conventional pollutants such as organic and inorganic nutrients and currently, nothing is known of how these conventional pollutants will interact with synthetic organic pollutants many of which can cause endocrine disruption. Organisms most prone to these endocrine disrupting compounds are longlived aquatic species such as fish. In the arid Southwestern U.S., these effluent-dependant or effluent-dominated waters (EDW's) are expected to increase in number and size as municipalities and their treatment plants are forced to handle larger amounts of sewage as population centers also increase in size. These EDW's will, over time, become hydrologically linked to other surface waters of the state and this places an increased importance in understanding these systems and their potential effects on wildlife and human health.

For this project, we are analyzing cold (*Onchorynchus apache*, Apache trout) and warmwater (*Gila elegans*, bonytail chub) native fish grown in captivity using water from 2 EDW's the PI's are currently investigating for another project; effluent from the Roger Road WWTP as it empties into the Santa Cruz River near Tucson and water from the Rio de Flag WWTP as it empites into the Rio de Flag in Flagstaff.

Fish are being housed in one of four, 650 gallon re-circulating tanks at the Environmental Research Laboratory. Two of the tanks are filled with split samples of water collected from one of the two EDW's ("treatment" tanks) previously mentioned while the remaining 2 tanks are filled with tap water treated by reverse osmosis with salts added to maintain osmo-regulation ("control" tanks). The water from each tank will be analyzed by Dana Kolpin at the USGS for a suite of compounds known to cause endocrine disruption in vertebrates. Fish have been implanted with PIT tags to identify individuals. Next month, we will randomly select tagged fish from each tank, withdraw blood, and analyze for 17ß estradiol, 11ketotestorone, and the egg protein vitellogenin. Blood samples will be sent to Dr. Timothy Gross at the USGS Florida Caribbean Science Center.

In addition to analysis of sex hormones and the egg protein vitellogenin, samples of male and female gonads will be taken after blood has been sampled, Testes will be cut longitudinally and ovaries transversely. Samples will be sectioned to 5 µm for histological evaluation. Gonads of female fish will be classified according to four stages of sexual maturation (stage 0,1,2,3 and 4), based on evaluation of histological slides. Male gonads will be classified according to three stages of sexual maturation (stage 1,2, and 3).

The results of this work will enable municipalities and resource managers to gain insight into the effect of EDW's on aquatic communities and human health.

This work is supported by the University of Arizona, Technology and Research Initiative Fund (TRIF), Water Sustainability Program Aquaculture facility for housing fish exposed to water collected from selected effluent dependent streams.

Bonytail Chub (Gila elegans)

Apache trout (Onchorynchus apache)

Biocriteria Assessment of EDW's within Arizona.

This work, funded by USEPA and ADEQ, is nearing completion and the final report due later this month.

This project examines aquatic communities of EDW's within the state so that determinations can be made regarding goal attainment of "aquatic and wildlife, effluent dependent". This involves examining aquatic macroinvertebrates within several EDW's and correlating community diversity, similarity, and pollution

tolerance with several chemical and geophysical parameters. Each EDW was sampled during the summer and winter months and spatial variation was accounted for by sampling downstream of outfalls to a "recovery area" as determined by physicochemical parameters. This involved much traveling within the state as well as a high degree of taxonomic expertise in identifying and quantifying macroinvertebrates, algae, terrestrial and aquatic plants, etc. Geomorphological variables were determined through a Rosgen level

We are working on the data analyses and expect to have the finalized report submitted within the next few weeks.

III analysis of each EDW.

Taking geomorphological measurements along Rio de Flag

Ancillary Projects

We also have an ongoing project with the Department of Interior, National Park Service examining aquatic communities in ephemeral streams in Arizona. During substantial periods of the year, these streams form disconnected pools and often go completely dry. In such systems, the hyporheos may play a very important role as refugia for aquatic organisms attempting to avoid dessication. In this project, we are sampling from the hyporheic zone using colonization pots placed in the thalweg of the streams as well as piezometers placed out of channel.

This assessment is being done to determine how pumping of groundwater for domestic use may affect aquatic communities adapted to drying of the stream bed for extended periods.

The result of this work may be used in water rights issues within the state.

We are also assisting both the US Bureau of Reclamation and Fish and Wildlife Service in determing whether certain backwaters along the lower Colorado River can be used as habitat by native species of fish. This involves examining water quality as well as morphometric measurements of selected backwaters and determining what restoration techniques, if any, are feasible to improve these species chance of survival and reproduction.

This project has just started and we are in the data gathering and preliminary analysis phase.

Upcoming Watershed Meeting at ADEQ.

We are planning to have the next meeting sometime in early to mid October. We will be discussing several agenda items as they pertain to each watershed from algal toxins to perchlorate, eutrophication, tastes and odors, drought, runoff from wildfires, and several others. This meeting will include several guest speakers. I will email an announcement to the list within the next few weeks, which will include a rough agenda. Any interested municipality or agency is welcome to attend. If you know of someone that is not on the mailing list and would like to be, please don't hesitate to let me know.