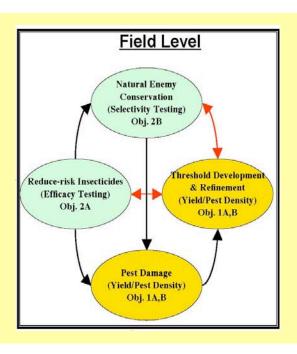
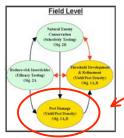

Plant/Pest/Pesticide
Interactions —



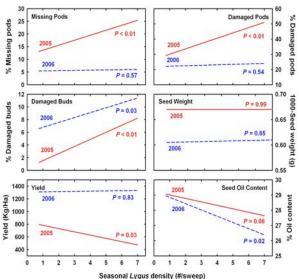
Field Level Experimental: Yield/Damage/Thresholds

PI	Project
Bundy	(1) Economic injury evalu ations in cotton (2) Injury to chile peppers
Ellsworth	Development of dynamic yi eld/density relationship for cotton
Godfrey	Refining pest management guidelines in dry beans
Goodell /Molinar /Jimenez	Developing pest management guidelines for eggplant
Goodell /Hutmach er/Godfrey	Strengthening rese arch and extension for Pima cotton
Naranjo /Ellsworth	(1) Yield/damage/density relationships in lesquerella (2) Yield/damage/density relationships in guayule
Palumbo	Economic status in vegetable and vegetable seed production
Parajulee	(1) Boll susceptibility window in cotton (2) Compensat ion for induced fr uit loss in cotton
Rosenheim /Ellsworth	Incorporating Geocoris into thresholds for cotton

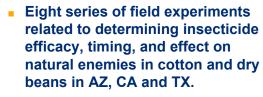
Field Level Experimental: Insecticide Efficacy/Selectivity


PI	Project
Ellsworth	Deployment options fo r reduced -risk and other insecticides in AZ cotton
Godfrey /Parajulee	Evaluating efficacy of registered and experimental insecticides in CA & TX cotton
Godfrey	Evaluating efficacy of registered and experimental insecticides in dry beans
McGuire	Developmen tof selective biopesticides
Naranjo /Ellsworth	Evaluation of selectivity of reduced -risk insecticides in AZ cotton

- 3 year study on economic thresholds for Lygus in cotton
- Preliminary analyses show 4-6 adults and 2-4 nymphs per plant before significant economic damage occurs
- Baseline data on potential injury to chile fruiting structures of various ages developed
- Lygus potentially problematic but field studies suggest peppers may not be a preferred host



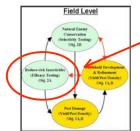
Pest Damage


- Conducted at least 18 field and lab experiments related to field-level Lygus damage to crops(cotton, seed broccoli, dry beans, chiles, eggplant, lesquerella, guayule) in CA, AZ, NM and TX.
 - Pima appears less able to compensate for fruit loss
 - Upland cotton able to compensate for ≈1/3 early fruit loss – modified by irrigation
 - New variety of lima bean is more tolerant
 - Lygus effects on lesquerella inconsistent

Lygus spp. Impact on Lesquerella

Naranjo et al., unpubl.

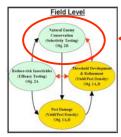
Reduced-Risk Insecticides



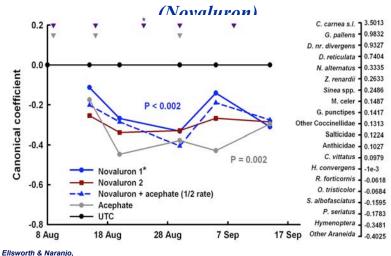
- Large number of compounds & combinations tested in cotton
 - flonicamid/metaflumizone -very good
 - orthene and oxamyl good
 - pyrethroids marginal with resistance issues
- Compounds & combinations examined in dry bean
 - pyrethroids very good

Threshold Development/Refinement

- Threshold of 15:4 verified in AZ cotton; planting date, irrigation termination & maturity class all affect economic outcomes
- NM studies appear to point to much higher threshold levels
- Insufficient data/analyses for chile peppers, lima beans, lesquerella, guayule, Pima cotton, eggplant
- Geocoris and Zelus impact Lygus suppression
- Calibration of sweep net sampling
- Instructional video of sweep sampling



Natural Enemy **Conservation**


- Selectivity of insecticides examined in cotton trials in CA and AZ
- AZ studies clearly show high selectivity of flonicamid and metaflumizone, but not novaluron
 - flonicamid is being widely

adopted by AZ growers Cotton growers now have


selective options for all three key pests in western US

Selectivity of WF/Lygus Insecticides

05F2L

Selectivity of Lygus Insecticides (Metaflumizone)

Canonical coefficient 0.2486 Sinea spp. M. celer 0.1487 G. punctipes 0.1417 Other Coccinellidae Salticidae 0.1224 Anthicidae 0.1027 C. vittatus 0.0979 P = 0.002Flonicamid 1 (max. rate) H. convergens - Flonicamid 2 * R. forticornis -0.0618 Flonicamid 3 * O. tristicolor Flonicamid 4 (max. rate)* S. albofasciatus -0.1595 - Acephate P. seriatus -0.1783

28 Aug

7 Sep

17 Sep

Selectivity of Lygus Insecticides

(Flonicamid)

unpubl.

unpubl.

Ellsworth & Naranjo,

-0.8

8 Aug

- UTC

18 Aug

G. pallens

D. reticulata

N. alternatus

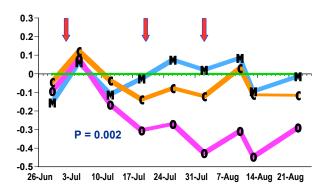
Z. renardii

0.9832

0.9327

0.7404

0.3335

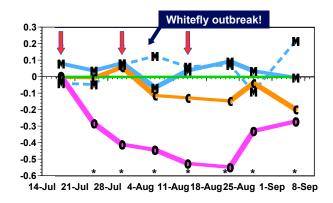

0.2633

-0.3481

Other Araneida 1 -0.4025

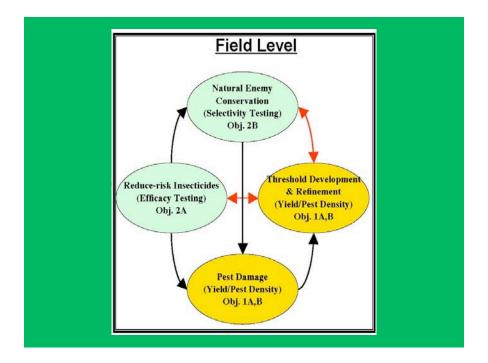
Principal Response Curve

Natural Enemies to Orthene v. Carbine or Metaflumizone


Ellsworth & Naranjo, unpubl.

06F

07F1NED


Principal Response Curve

Natural Enemies to Orthene v. Carbine or Metaflumizone

06F25NED Ellsworth & Naranjo, unpubl.

