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Abstract. Algorithms relating remotely sensed woody cover to biomass are often the basis
for large-scale inventories of aboveground carbon stocks. However, these algorithms are
commonly applied in a generic fashion without consideration of disturbances that might alter
vegetation structure. We compared field and remote sensing estimates of woody biomass on
savannas with contrasting disturbance (fire) histories and assessed potential errors in
estimating woody biomass from cover without considering fire history. Field surveys
quantified multilayer cover (MLC) of woody and succulent plants on sites experiencing
wildfire in 1989 or 1994 and on nearby unburned (control) sites. Remote sensing estimates of
the woody cover fraction (WCF) on burned and control sites were derived from contemporary
(2005) dry-season Landsat Thematic Mapper imagery (during a period when herbaceous cover
was senescent) using a probabilistic spectral mixture analysis model. Satellite WCF estimates
were compared to field MLC assessments and related to aboveground biomass using
allometry.

Field-based MLC and remotely sensed WCFs both indicated that woody cover was
comparable on control areas and areas burned 11–16 years ago. However, biomass was
approximately twofold higher on control sites. Canopy cover was a strong predictor of woody
biomass on burned and control areas, but fire history significantly altered the linear cover–
biomass relationship on control plots to a curvilinear relationship on burned plots. Results
suggest predictions of woody biomass from ‘‘generic’’ two-dimensional (2-D) cover algorithms
may underestimate biomass in undisturbed stands and overestimate biomass in stands
recovering from disturbance. Improving the accuracy of woody-biomass estimates from field
and/or remotely sensed cover may therefore require disturbance-specific models or detection
of vegetation height and transforming 2-D vegetation cover to 3-D vegetation volume.

Key words: allometry; Arizona, USA; carbon pools; carbon sequestration; Landsat; mesquite; Prosopis
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INTRODUCTION

Aboveground biomass is a fundamental component
of terrestrial carbon budgets and biosphere metabolism.
In arid and semiarid regions characterized by savannas,
shrublands, and woodlands, tracking changes in above-
ground biomass in response to stress and disturbance
requires tracking changes in the abundance of shrubs
and arborescents. Over the past century, woody-plant
abundance has been increasing in dryland ecosystems,
including grasslands, worldwide (Archer 1994, van
Auken 2000, Archer et al. 2001). Collectively, increases
in woody-plant abundance in drylands are thought to
comprise a significant but highly uncertain portion of
the carbon sink in the United States (e.g., Pacala et al.
2001, Schimel et al. 2001, Houghton 2003) and Australia
(e.g., Gifford and Howden 2001, Burrows et al. 2002,

Henry et al. 2002). Much of this uncertainty reflects a
poor accounting of the rate and spatial extent of changes
in shrub and tree mass. Our ability to monitor and
project future states of dryland ecosystems in response
to predicted changes in climate, atmospheric chemistry,
and disturbance regimes will depend on our ability to
accurately assess the contribution of woody plants to
vegetation structure and biomass.

Direct quantification of aboveground woody biomass
is time and labor intensive and causes significant
disturbance. As a result, direct assessments are seldom
feasible or practical. A widely used alternative involves
the development of regression equations that predict
aboveground biomass from nondestructive measure-
ments of plant height, basal area, canopy area, etc.
These allometric approaches have been widely used in
drylands to estimate shrub and tree biomass (e.g.,
Ludwig et al. 1975, Chojnacky 1991, Northup et al.
2005, and references therein). While these allometric
relationships are useful in estimating woody biomass at
the plot scale (e.g., Miller et al. 2003, Barbosa and
Fearnside 2005) it is logistically difficult to apply them
across large areas and over time. However, when used in
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conjunction with remote sensing products that generate
vegetation indices and fractional vegetation cover, they
offer the potential to inventory and monitor above-
ground carbon stocks in woody plants and the change
through time over large and remote areas (e.g., Gower et
al. 1999, Asner et al. 2003, Dong et al. 2003, Zheng et al.
2004).
The consistency of woody cover–mass relationships in

areas with different land tenures and disturbance
regimes has seldom been evaluated. Perturbations
influencing the structure of woody plants in arid and
semiarid ecosystems include herbivory (Augustine and
McNaughton 2004, Baxter and Getz 2005), brush
management (Scifres 1980, Chidumayo 2002, Asner et
al. 2003), and fire (Ben-Shahar 1998). The latter, either
wild or prescribed, is geographically widespread in
wildlands and can rapidly alter ecosystem structure.
How might a disturbance such as fire alter cover–mass
relationships? One of the primary regeneration strategies
of woody species after perturbation is sprouting from
stems or roots surviving the fire (Biswell 1974, Midgley
1996, Menges and Hawkes 1998, Bond and Midgley
2001). Morphological characteristics of plants vegeta-
tively regenerating after fire include shorter stature and
higher root : shoot ratios than unburned counterparts
(Midgley 1996). Thus, it is reasonable to expect that the
structure of woody-plant communities, and hence
algorithms relating remotely sensed woody-plant canopy
cover to biomass, may vary as a function of fire history.
How robust are remote sensing estimates of woody-
plant biomass based on woody cover–mass relation-
ships? Do ‘‘generic’’ cover–biomass algorithms (e.g.,
algorithms ignoring disturbance history) accurately
quantify biomass on sites with contrasting disturbance
histories? We addressed these questions by (1) quanti-
fying the relationship between aboveground live woody
biomass (hereafter ‘‘woody biomass’’) and woody cover
on burned and control sites in a semiarid savanna at plot
and landscape scales using field-based and remote
sensing techniques, respectively, and (2) determining
whether knowledge of fire history could improve the
accuracy of woody-biomass estimates derived from
cover. Based on the premise that woody plants
vegetatively regenerating from fire are likely to reestab-
lish canopy area more quickly than biomass, we
hypothesize that fire would alter cover–biomass rela-
tionships such that generic cover–biomass algorithms
would overestimate woody biomass on areas recovering
from fire.

METHODS

Study area

The study was conducted on the 200-km2 Santa Rita
Experimental Range (SRER) (31.838 N, 110.858 W),
approximately 50 km south of Tucson, Arizona, USA.
Established in 1902, the SRER is the oldest experimental
range in the United States (Sayre 2003). Elevations at
SRER extend from 884 to 1585 m. Annual precipitation

at 1200 m elevation is variable, averaging 250 mm in dry
years and 500 mm in wet years. Precipitation increases
gradually with elevation and is bimodally distributed,
with more than half falling in summer (McClaran et al.
2002). Mean annual temperature at 1310 m is 17.98C
(National Climate Data Center, available online).4

Lower elevations are characterized by long, gently
sloping alluvial fans cut by canyons and arroyos at
higher elevations. Plant communities are dominated by
native grasses, introduced grasses (primarily Eragrostis
lehmanniana Nees), and mesquite (Prosopis velutina
Wooten) shrubs, the latter having increased in cover
since the early 1900s. See McClaran (2003) for
additional details on vegetation, soils, and climate. Fire
is common in semiarid savannas such as those at the
SRER (McPherson 1995). Our study focused on two
areas with known recent fire histories. One fire burned
;500 ha on 9 June 1989; another fire on 2 June 1994
burned ;4047 ha (Womack 2000, McClaran 2003).
Studies assessing the impacts on P. velutina 18 months
(DeBano et al. 1996) and eight years (Gottfried et al.
2003) after the 1994 fire indicated that ;90% of the P.
velutina plants were impacted.

Satellite data pre-processing

Landsat Thematic Mapper (TM) was used to assess
the effects of the 1989 and 1994 fires on woody-plant
cover and biomass. Landsat TM is a multispectral
space-borne sensor containing six visible, near-infrared
(NIR) and shortwave infrared (SWIR) bands with a
nominal spatial resolution of 303 30 m and one thermal
band. Cloud-free Landsat TM images were acquired for
five dates: 9 June 1989, 25 June 1989, 4 April 1994, 23
June 1994, and 5 June 2005. The paired 1989 and 1994
images represented dates immediately before and after
the two fires and were used to locate burned areas. The
image from the 2005 dry season was used to estimate
current woody cover.
Image pre-processing entailed radiometric calibration,

including geometric rectification and removal of atmo-
spheric effects. All images were ortho-rectified based
upon preregistered Landsat images and a digital
elevation model. The root mean square error of ortho-
rectification was controlled to less than half of a pixel
(,15 m) for each image. A second-degree polynomial
geometric model and nearest neighbor resampling was
utilized so that the inherent spectral information was not
altered by image registration and resampling. Atmo-
spheric corrections utilized the cosine of the solar zenith
angle correction (COST) model (Chavez 1996). This
model is an improved dark-object subtraction model
that corrects for additive path radiance and multiplica-
tive transmittance effects. It is solely based on the digital
image and does not require in situ field measurements or
acquisition of atmospheric profiles at the time of satellite

4 hhttp://www.ncdc.noaa.gov/oa/ncdc.htmli

CHO-YING HUANG ET AL.1900 Ecological Applications
Vol. 17, No. 7



overflight. This model is suitable for long-term, multi-
temporal studies in which there is lack of historical
ground atmospheric correction information and is as
accurate as models requiring in situ atmospheric field
measurements and sophisticated radiative transfer codes
(Chavez 1996). The COST model has been validated in
dryland environments and performs well when sun
zenith angles are ,458.

Burn severity maps

The normalized burn ratio (NBR) and differenced
NBR (dNBR) (van Wagtendonk et al. 2004) were used
to delineate the spatial extent of the 1989 and 1994
wildfires using paired sets of pre- and postfire images.
The NBR was calculated using Landsat NIR (band 4,
spectral range 0.76–0.90 lm) and SWIR (band 7,
spectral range 2.08–2.35 lm) bands, and dNBR was
calculated as the difference between prefire and postfire
NBR:

NBR ¼ ðTM4# TM7Þ
ðTM4þ TM7Þ3 1000 ð1Þ

dNBR ¼ NBRprefire # NBRpostfire: ð2Þ

The NBR (Eq. 1) reflects burn severity, and the dNBR
(Eq. 2) is an index to enhance the identification and
demarcation of burned areas where there is a loss of
biomass during fire (U.S. Geological Survey, available
online).5 The dNBR is highly correlated with the
composite burn index (van Wagtendonk et al. 2004), a
field measure of burn severity, and is frequently used by
the U.S. Forest Service to evaluate forest fires. The
dNBR has also proven to be reliable for delineating fire
scars in semiarid savannas (Holden et al. 2005, Lentile et
al. 2006). Based on Forest Service criteria, pixels with a
dNBR . 100 were classified as burned.

Field data

Twenty 403 40 m plots spanning the full spectrum of
woody cover on the SRER were randomly selected with
the aid of a pan-sharpened high-spatial-resolution (0.61
m) QuickBird image (DigitalGlobe, Longmont, Colo-
rado, USA) acquired on 8 May 2005 and overlain with
dNBR burn severity maps. Plots identified on images

were located in the field using a global positioning
system (Garmin GPS V, Garmin International, Olathe,
Kansas, USA). Eight plots were situated in areas known
to be fire-free for at least 20 years (hereafter referred to
as control plots). Four plots were established in the 500-
ha area burned in 1989, and eight plots were situated in
the 4047-ha area burned in 1994 (these 12 plots hereafter
referred to as burned plots). The canopy area of
individual shrub and cactus plants occurring within a
203 40 m belt in each plot was estimated as described in
Table 1. Canopy areas for shrubs were then summed,
without regard to their understory vs. overstory status,
to generate a single, multilayer plot-level estimate of
woody cover (MLC). Aboveground biomass (leaf and
wood) for each plant was estimated using previously
established equations predicting plant mass from canopy
area (Table 1). Woody biomass (in kilograms per square
meter) was computed by summing across all plants and
dividing total biomass by the belt area. Regression
models (JMP IN version 4 [Sall et al. 2001]) using MLC
as the independent variable to predict woody biomass
were then developed for burned plots, for control plots,
and for data pooled across burned and control plots. By
contrasting the outcomes predicted from the model
using pooled data (generic model) to that of models
taking fire history into account (disturbance-specific
models), we could assess potential errors in predicting
woody biomass when fire history is unknown.

Estimation of woody biomass from satellite imagery

In southern Arizona, savannas generally exhibit the
least amount of herbaceous green biomass during the
driest and hottest months (May/June), just prior to the
onset of summer monsoon rainfall in July/August.
During the pre-monsoon period, the only green plants
are trees, shrubs, and cacti. Hence, the green signal
derived from satellite data acquired during this period
represents woody and succulent plants. A pre-monsoon
Landsat TM image collected on 5 June 2005 was
analyzed using a probabilistic mixture model (Automat-
ed Monte Carlo Unmixing [AutoMCU; Asner and
Lobell 2000]) to extract the woody cover fraction
(WCF) and derive uncertainty estimates of sub-pixel
cover fraction values. AutoMCU was originally de-
signed for the SWIR region (2000–2400 nm) of hyper-
spectral data because of the stability and high
separablility of green vegetation, litter, and bare-soil

TABLE 1. Allometric models relating shrub and cactus canopy area (CA; cm2 or m2) or radius (r; cm) to dry biomass (M; g or
kg/plant).

Species (n) Model! R2 Reference

Prosopis velutina (31) ln(Mkg) ¼ #0.67 þ 1.54 ln(CA1, m
2) 0.97 personal observations

Isocoma tenuisecta (27) ln(Mg) ¼ #4.81 þ 1.25 ln(CA1, cm
2) 0.95 personal observations

Celtis pallida (36) ln(Mg) ¼ 1.02[6.78 þ 1.41 ln(CA2, m
2)] 0.88 Northup et al. (2005)

Opuntia engelmannii (26) Mkg ¼ [(4.189 3 r3)0.965]/105 0.95 Vogl et al. (2004)

! Equations for canopy areas and radius: CA1 ¼ pR2, where R ¼ ([longest axis/2]þ [perpendicular axis/2])/2; CA2 ¼ p(longest
axis/2)(perpendicular axis/2); and r ¼ ([center height/2] þ [longest diameter/2])/2, where center height and longest diameter are
measured in cm.

5 hhttp://burnseverity.cr.usgs.gov/fire_main.aspi
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spectral signatures within this part of the electromag-
netic spectrum. However, the model also has been
applied to multispectral Landsat TM and advanced
spaceborne thermal emission and reflection radiometer
(ASTER) data (Asner and Heidebrecht 2002). One
important component of AutoMCU that makes it
different from other mixture models is the use of a set
(or a bundle) of spectral libraries with pure green
vegetation, standing/surface litter, and bare-soils spectra
(end members) (Bateson et al. 2000). Variability of
spectral signatures for green vegetation (Asner 1998,
Asner et al. 1998, Martin et al. 1998, Dennison and
Roberts 2003), litter (Elvidge 1990, van Leeuwen and
Huete 1996, Nagler et al. 2003), and bare soil (Stoner
and Baumgardner 1981, Lobell and Asner 2002) end
members has been documented. We assigned end
member spectral signatures using a combination of field
spectroradiometer data acquired in this study (Analyt-
ical Spectral Devices, Boulder, Colorado, USA) and
data from existing dryland spectral libraries (Asner
1998, Asner et al. 1998, Batchily et al. 2003, Landmann
2003, Smith et al. 2005) (numbers of samples for green
vegetation¼ 95, litter¼ 42, bare soil¼ 197). Due to low
separablility of spectral signals of litter and bare soils in
TM spectral space and our specific focus on woody
cover, we combined litter and bare soils into a single end
member termed ‘‘others.’’
The TM pixels containing field sampling plots were

utilized to develop regression models that used WCF as
the independent variable to predict field woody biomass
and MLC with and without consideration of fire history.
AutoMCU typically stabilizes after 30þ unmixing runs
for hyperspectral data (Asner and Lobell 2000), and
Asner et al. (2003) used 250 runs with Landsat
Enhanced Thematic Mapper plus data on mesquite
savannas in Texas. After a preliminary evaluation of
accuracy, consistency, and computation efficiency, we
used 750 iterations to unmix our TM data. In addition,
we controlled the quality of unmixing by constraining
the standard deviation of the WCF after unmixing.

Postfire recovery of woody biomass and cover

Recovery of woody biomass and cover following the
1989 and 1994 fires was assessed at a large spatial extent
using remote sensing-based regressions to predict woody
biomass and MLC from the WCF in burned and control
settings. Stratified random sampling was used to select a
large number of four 60360 m pixels within burned (n¼
122) and nearby control (n¼ 141) areas on a 5 June 2005
Landsat TM image. The WCF derived from these
randomly selected pixels using AutoMCU was convert-
ed to woody biomass and MLC using the aforemen-
tioned regression models. The number of pixels in a
given biomass or canopy cover class was divided by the
total number of pixels sampled for each fire treatment to
normalize woody-biomass and cover estimates on
burned and control sites and to facilitate comparisons.

Error assessment of estimating woody biomass
without considering fire history

A sensitivity analysis was conducted to examine the
impacts of ignoring fire effects when estimating woody
biomass from cover at different spatial scales. We
quantified the difference (errors) between woody bio-
mass estimated with generic models vs. disturbance-
specific models. These differences are expressed as actual
error, relative error ([actual error/true measurement] 3
100; shown as a percentage), and overall actual and
relative error (the summations of absolute underestima-
tion and overestimation for actual and relative errors,
respectively) across the range of MLC (0.10–0.82) and
WCF (0.05–0.32) values encountered in the field plots.

RESULTS

Fire and cover–biomass relationships: plot scale

Mesquite was the dominant shrub, comprising .43%
(mean ¼ 90%) of the canopy area and .68% (mean ¼
93%) of the total woody biomass on all sites. Wildfire
effects on woody-plant cover were spatially variable,
with the large 1994 fire creating a more complex burned
surface than the smaller 1989 fire (Fig. 1). An example of
the effects of spatial and temporal heterogeneity in fire
severity on shrub stand structure and biomass is
illustrated in Fig. 2. Although shrub cover was
comparable on these two burned plots (Fig. 2A, burned
in 1989, MLC ¼ 0.83; Fig. 2B, burned in 1994, MLC ¼
0.86), they differed almost twofold with respect to shrub
biomass. These biomass differences corresponded to
marked differences in shrub size-class distributions
(numerous small plants on the one plot vs. fewer, larger
plants on the other plot [see Fig. 2 inset table]). The
relationship between woody biomass and MLC was
linear with an R2 ¼ 0.72 when data from all sites was
pooled (Fig. 3A). However, when data were segregated
by fire history, the best-fit functional form of the MLC–
biomass function differed on burned (nonlinear) vs.
control sites (linear), and R2 values increased 16% and
21%, respectively (Fig. 3B). Regressions using fire as a
dummy variable indicated fire was significant at P ¼
0.06. Biomass on burned plots was consistently lower
than that in control plots when MLC was ,0.55,
reflecting the low number of large P. velutina plants on
burned plots (Fig. 4B) compared to control plots (Fig.
4A). When MLC and P. velutina cover were high,
differences between control and burned plots were
generally minimal, owing to similar P. velutina size-class
distributions (Fig. 4C, D).

Fire and cover–biomass relationships: landscape scale

Predictions of woody-plant biomass from satellite-
derived WCFs were significant (P , 0.01), but rather
weak (R2 ¼ 0.34) for data pooled across all sites.
Partitioning sites based on fire history improved R2

values to 0.60 and 0.63 on burned (curvilinear relation-
ship, P ¼ 0.02) and control (linear relationship, P ,
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0.01) sites, respectively (Fig. 5A). The relationship
between field-based MLC and satellite-derived WCF
was linear (R2 ¼ 0.56, P , 0.01; Fig. 5B). Segregating
data by fire history failed to improve this R2 significantly
or yield statistically different best-fit functions (P ¼
0.87).
The assessment of postfire recovery at SRER showed

that satellite-derived woody-plant cover was statistically
comparable on burned and control sites (P¼ 0.98, F1, 261

, 0.01; Fig. 6A). However, the mean biomass of shrubs
was greater and less variable (lower CV) on control sites
compared to sites burned in 1989 or 1994 (P , 0.01,
F1, 261 ¼ 123.82) owing to a greater abundance of pixels
with relatively high woody-plant biomass (&1.25 kg/m2;
Fig. 6B and inset table).

Sensitivity analysis

Predictions of woody biomass from MLC using
generic algorithms that ignored fire disturbance always
underestimated plot-scale biomass in control areas (Fig.
7A). The actual errors decreased linearly from 0.21 at
the lowest MLC to 0.15 kg/m2 at the highest MLC. In
contrast, relative errors dropped exponentially from
78% at the lowest MLC to 7% at the highest MLC, with
the greatest reductions occurring between MLC of 0.1 to
0.3. In recently burned areas, predictions based on

generic algorithms overestimated biomass when MLC ,
0.76. The maximum error of overestimation (0.28
kg/m2) occurred at a MLC of 0.42, whereas the greatest
relative error (94%) occurred at MLC of 0.17. Generally
speaking, the largest actual errors (e.g., .0.4 kg/m2)
occurred at a medium range of MLC values (0.25–0.56);
and large overall relative errors (e.g., .100%) took place
at low MLC (0.11–0.28). At a landscape scale (Fig. 7B),
predictions of woody biomass from WCF using generic
equations always underestimated biomass in control
areas. When WCF was ,0.31, the generic model
overestimated biomass in recently burned areas. Large
overall actual errors (e.g., .0.6 kg/m2) occurred at
medium (0.17–0.26) and high (.0.3) WCF areas;
significant overall relative errors (e.g., .100%) occurred
in areas with low (0.09–0.17) WCFs.

DISCUSSION

Transformations of woody-plant stand structures
after wildfire

Spatial variation in perturbations such as fire (e.g.,
Fig. 1) may accentuate preexisting heterogeneity in
vegetation structure. Within a burned landscape, there
may be some areas that escape fire, some areas that
experience low-intensity fire, and some that experience
high-intensity fire (e.g., Slocum et al. 2003). In portions

FIG. 1. Fire maps for the 1989 (dark-gray pixels) and 1994 (light-gray pixels) wildfires at the Santa Rita Experimental Range
(SRER), Arizona, USA, showing areas where the differenced normalized burn ratio was .100. White areas are unburned since
1984, and black squares are field sampling plots. Linear features are roads and perimeter property boundary. Locations of SRER
and major cities within Arizona are shown in the lower right corner.
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of the landscape experiencing fire, vegetation structure
may be ‘‘reset’’ and homogenized to create relatively
‘‘even-aged’’ stands of shrubs (Figs. 2A and 4B).
Woody-plant response to fire is also variable and is a
function of fire behavior (rate of spread, intensity, and
season), size of the woody plant at the time of the fire
(smaller plants are generally more susceptible than
larger plants), and time elapsed since the last fire
(McPherson 1995). In some cases plants are top-killed
and regenerate vegetatively; in other cases, plants may
be killed and regeneration must be from seed. Field
surveys at the SRER indicated that within the area

burned in 1994, 10% of the P. velutina plants escaped the
fire, 30% were killed, and 60% were shoot-killed or
crown-scorched and recovered by sprouting (DeBano et
al. 1996, Gottfried et al. 2003). Patterns observed in the
plot depicted in Figs. 2B and 4D are consistent with
these survey results. By contrast, the 1989 fire, which
was overall more spatially uniform (Fig. 1), appears to
have had a much different effect on vegetation structure
(Figs. 2A and 4B).
At the plot and landscape scales, our data indicate

that the 1989 and 1994 fires sufficiently altered
vegetation structure to change the cover–mass relation-

FIG. 2. Size-class distribution of shrubs (primarily Prosopis velutina) and associated QuickBird images (pixel size ;0.61 m) of
two 403 40 m plots with comparable multilayer cover (MLC). (A) Plot on an area burned in 1989 (MLC¼ 0.83 and 85% from P.
velutina). (B) Plot on an area burned in 1994 (MLC¼0.86 and 80% from P. velutina). The embedded table shows total shrub counts
and biomass for each plot and biomass and canopy area per plant on each plot (all values are reported as mean 6 SE).
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ship from linear in control settings to nonlinear on
burned areas. The relationship between canopy cover
and biomass for individual P. velutina plants is
nonlinear (Table 1), such that for larger plants, a small
increase in canopy area translates into a large increase in
biomass. Thus, the degree of departure from linearity in
plot- and landscape-scale cover–biomass relationships
will be a function of the number of relatively large plants
on the site and the number of these that escape severe
fire damage. The greater the number of large trees
escaping fire on a site, the less the divergence in cover–
mass relationships. This suggests large-scale estimates of
biomass from cover may not be improved by knowledge
of fire history (i.e., when an area burned) unless fire
history maps are accompanied by information on fire
impacts on stand structure within the area burned (e.g.,
burned severity or woody-plant size-class distributions).
In many of the world’s drylands, even simple informa-
tion on fire history (date of burn, spatial extent)
generally is unavailable, let alone information on post-
fire stand structure. Remote sensing tools have the
potential to resolve these limitations, but must be
applied with caution and a full understanding of their
limitations.

Quantifying woody-plant cover and biomass in semiarid
savannas using remote sensing

It is a challenge to quantify green vegetation in
dryland environments using remotely sensed data. Most
pixels in a dryland landscape are a heterogeneous
mixture of vegetation signals influenced by background
reflectance from bright or dark soils and litter (Huete

1988, van Leeuwen and Huete 1996, Gao et al. 2000).
Results showed that WCF (derived from AutoMCU)
can be a salient variable to estimate MLC (Fig. 5B) and
woody biomass (Fig. 5A) with known disturbance
histories. However, by investigating randomly selected
burned and control sites from Fig. 6, we found that the
WCF was less sensitive in areas with high woody cover
and that it saturated at 0.4 (MLC ¼ 0.87). This
saturation might result from the limitation of Auto-
MCU treating savannas as two-dimensional (2-D)
surfaces rather than 3-D volumes. This constraint would
inhibit the utility of using satellite-derived WCF to
predict woody biomass in areas with dense woody cover,
although such areas are not commonly found in
semiarid savannas where annual rainfall is ,400 mm
(Sankaran et al. 2005).

Recovery of semiarid savannas
after recent fire disturbance

A large-scale comparison of WCF-based MLC
between areas with contrasting fire histories indicated
no differences in woody-plant cover (Fig. 6A). Thus,
areal cover of woody plants on burned landscapes had
recovered to that of control areas within 11–16 years.
However, the variation in MLC in burned sites (CV ¼
34%) was slightly higher than that of control sites (27%),
suggesting a slight amplification of spatial heterogeneity
within burned areas. In contrast to MLC, the mean
woody biomass in control sites was nearly twofold
greater with lower spatial variation than in burned areas
(Fig. 6B). Areas with ,0.75 kg/m2 woody biomass
occurred in 67% of the pixels on burned sites, compared

FIG. 3. The relationship between woody biomass and multilayer woody cover (MLC) from field observations (A) for data
pooled across all sites (generic model) and (B) for data segregated based on the fire histories (disturbance-specific models).
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to only 14% in control sites. Furthermore, areas with
.1.75 kg/m2 of biomass were rare on burned sites (7%
of pixels) but were abundant on control sites (38% of
pixels). Collectively, these patterns suggest the recovery
of woody biomass is still in progress after 11–16 years of
regeneration, even though overall cover has returned to
control plot levels.

Error in estimating woody biomass
without considering fire history

The outcomes of sensitivity analyses at plot and
landscape scales validated our hypothesis: fire would
alter cover–biomass relationships such that generic
cover–biomass algorithms would overestimate woody
biomass on areas recovering from fire. The sensitivity
analyses for field observations and remote sensing
estimates were quite similar (Fig. 7A, B, respectively);
the slight discrepancy may reflect differences in data
resolution. Predictions of woody biomass based on
generic models that did not consider fire disturbance

underestimated biomass in control areas regardless of
cover levels and overestimated biomass on burned sites.
Remote sensing estimates showed that largest overall
errors (e.g., .0.6 kg/m2) occurred at medium (0.17–
0.26) and high (.0.3) WCFs. Among randomly sampled
pixels (n ¼ 1052) from Fig. 6, 63% of WCFs fell within
this range. Large relative errors (.100%) would occur at
low WCFs locations ranging from 0.09 to 0.17, which
was the case in ;30% of all sampled pixels.

Implications for estimating woody biomass
in semiarid savannas

Accurate estimates of woody biomass are the foun-
dation for small- and large-scale carbon exchange
studies in terrestrial environments, and for scientists,
decision makers, and governments charged with devel-
oping, implementing, and monitoring carbon sequestra-
tion programs. Indirect assessments of biomass from
cover are typically the only practical means of quanti-
fying woody biomass in ecosystems, and this approach is

FIG. 4. Size-class distribution (left-hand y-axis), and cumulative relative biomass and canopy cover (solid and dashed lines,
respectively) (right-hand y-axis) of the dominant woody species, Prosopis velutina (;93%), within 203 40 m belts in (A, C) control
plots and (B, D) plots on sites burned in 1994 with medium (panels A, B; total canopy area¼303 and 378 m2, respectively) and high
(panels C, D; total canopy area¼ 612 and 523 m2, respectively) canopy cover.
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particularly attractive if it can be used in conjunction
with satellite instrument arrays to quantify and monitor
biomass over large, remote, and heterogeneous areas.
Typically, cover–biomass algorithms are developed for
individual plants of a given species at a given locale.
These are then generalized and applied to other species
and areas where specific algorithms are not available. As
shown in this study, care must be taken when using these

plant-scale algorithms to estimate biomass at plot and
landscape scales at which plant size-class distributions
may strongly influence results. In our study, fire history,
via its influence on plant size-class distributions, strongly
impacted the linearity of algorithms relating cover to
biomass at plot and landscape scales. Although our
study focused on fire, other disturbances and environ-
mental stresses are also likely to influence cover–mass

FIG. 5. (A) The relationships between field-estimated woody biomass and woody-cover fraction (WCF) derived from Landsat
Thematic Mapper data using the AutoMCU model on burned (dotted line) and control (solid line) sites. (B) The relationship
between multilayer woody cover (MLC) from field observations and WCF. The broken line represents a 1:1 relationship.

FIG. 6. (A) Frequency distribution of multilayer cover (MLC) classes and (B) woody-biomass classes on burned and control
areas. Values are derived from contemporary Landsat Thematic Mapper imagery (5 June 2005). Biomass and MLC were estimated
using the regression models in Fig. 5. The inset table depicts mean, standard error (SE), and coefficient of variation (CV; %) of
AutoMCU-estimated MLC and woody biomass for burned (n ¼ 122) and control (n ¼ 141) areas.
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relationships, though not necessarily in a similar
fashion. Knowledge of the disturbance history and land
tenure may therefore be pivotal for accurately estimat-
ing woody biomass at different scales. However, in most
cases, historical, spatially explicit records of disturbance
and management practices are not available, and even if
they were, site- and disturbance-specific cover–biomass
algorithms likely do not exist.
How then to proceed given these substantial con-

straints? One possibility would be to utilize air- or space-
borne light detecting and ranging (LiDAR) to quantify
vegetation height (e.g., Hese et al. 2005, Farid et al.
2006) and then develop libraries of algorithms that relate
plant cover and plant height to biomass. Adding the
vegetation height dimension would generate a 3-D
volumetric metric that may accurately represent above-
ground biomass across a broad range of stress and
disturbance histories without the need for site-specific
knowledge of those stresses and disturbances.
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