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Abstract

The invasion of woody plants into grass-dominated ecosystems has occurred worldwide during the past century with

potentially significant impacts on soil organic carbon (SOC) storage, ecosystem carbon sequestration and global

climate warming. To date, most studies of tree and shrub encroachment impacts on SOC have been conducted at small

scales and results are equivocal. To quantify the effects of woody plant proliferation on SOC at broad spatial scales and

to potentially resolve inconsistencies reported from studies conducted at fine spatial scales, information regarding

spatial variability and uncertainty of SOC is essential. We used sequential indicator simulation (SIS) to quantify spatial

uncertainty of SOC in a grassland undergoing shrub encroachment in the Southern Great Plains, USA. Results showed

that both SOC pool size and its spatial uncertainty increased with the development of woody communities in

grasslands. Higher uncertainty of SOC in new shrub-dominated communities may be the result of their relatively

recent development, their more complex above- and belowground architecture, stronger within-community gradi-

ents, and a greater degree of faunal disturbance. Simulations of alternative sampling designs demonstrated the effects

of spatial uncertainty on the accuracy of SOC estimates and enabled us to evaluate the efficiency of sampling

strategies aimed at quantifying landscape-scale SOC pools. An approach combining stratified random sampling with

unequal point densities and transect sampling of landscape elements exhibiting strong internal gradients yielded the

best estimates. Complete random sampling was less effective and required much higher sampling densities. Results

provide novel insights into spatial uncertainty of SOC and its effects on estimates of carbon sequestration in terrestrial

ecosystem and suggest effective protocol for the estimating of soil attributes in landscapes with complex vegetation

patterns.
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Introduction

Woody encroachment has occurred in grass-dominated

ecosystems around the world (Van Auken, 2000; Archer

et al., 2001; Asner et al., 2004; Tape et al., 2006). Causes of

this change appear to involve some combination of

climate change, livestock grazing, suppression of fire,

and atmosphere CO2 enrichment (Bond & Midgley,

2000; Archer et al., 2001; Polley et al., 2003). The shift

from grass to woody domination has important impacts

on ecosystem structure, microclimate, and key ecosys-

tem processes such as productivity, hydrology, soil

erosion, and the storage and turnover of soil nutrients

(Archer, 2009). Since a large portion of the world’s land

surface is covered by grass-dominated ecosystems

(Daly et al., 2000), woody invasion into these ecosystems

can have important implications for regional and global

biogeochemistry and climate (Boutton et al., 1999; Wess-

man et al., 2004; Asner & Archer, 2009). The Southern

Great Plains of the USA are a case in point. Studies

using historical aerial photos, tree rings, carbon iso-

topes, and ecosystem models have independently

shown extensive woody plant invasion into areas once

characterized as grassland over the past 100 1 years (as

summarized in Archer, 1995).

Given the global extent of woody plant invasion into

grasslands across the world, there is growing interest in

determining how changes from grass to woody plant

dominance might influence global biogeochemical
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cycles and the climate system via impacts on soil carbon

storage and dynamics (Houghton et al., 1999; Asner

et al., 2004; CCSP, 2007; Archer, 2009). Studies have

found increased soil organic carbon (SOC) storage after

woody invasion in some ecosystems (Schlesinger et al.,

1996; McKinley & Blair, 2008; Boutton et al., 2009), but no

net change, or decreased SOC storage, in others (Gill &

Burke, 1999; Jackson et al., 2002). Reasons for these

discrepancies still remain unclear. It is our contention

that the ability to quantify the impacts of woody en-

croachment on the carbon cycle is currently hindered due

to the lack of appropriate methodology for estimating

SOC storage in arid and semiarid landscapes with com-

plex vegetation patterns across multiple spatial scales.

Understanding spatial variability and uncertainty of

soil attributes is necessary for their accurate estimation

(Conant & Paustian, 2002; Legendre et al., 2004). Direct

measurements of SOC are time-consuming and expen-

sive, both in the laboratory and in the field, particularly

when attempting to characterize SOC at broad spatial

scales. A better understanding of the spatial uncertainty

and variability of SOC would help optimize field sam-

pling designs to accurately estimate SOC storage with

minimum sampling effort. Many studies have quanti-

fied spatial heterogeneity of soil properties after woody

plant invasion (Jackson & Caldwell, 1993; Schlesinger

et al., 1996; Bekele & Hudnall, 2006; Throop & Archer,

2008), but none have explored the spatial variability and

uncertainty in SOC and how they may affect SOC

storage estimates.

We refer spatial variability as the variation in SOC

across spatial extent; and spatial uncertainty as the

degree of uncertainty in estimating SOC at a given

location based on known sample data. In this distinc-

tion, a variable at a given extent with high spatial

variability may have low spatial uncertainty if the

variable has a strong and consistent spatial pattern. In

such instances, accurate predictions at unsampled loca-

tions can be made based on neighboring samples.

Conditional stochastic simulations, including sequen-

tial Gaussian simulation (SGS) and sequential indicator

simulation (SIS), (Rossi et al., 1993; Zhao et al., 2005),

have been used to assess spatial uncertainty by gener-

ating a large number of realization maps based on

known sample data. The conditional probability distri-

bution of the variable of interest at a given location,

which quantifies the amount of uncertainty, can be

obtained from these realizations (Isaaks & Srivastava,

1989; Goovaerts, 1999). Spatial uncertainty obtained

from simulations can then be used to help design

efficient point sampling strategies to minimize sam-

pling intensity while achieving a desired accuracy

for broader-scale estimates. Sampling designs can be

evaluated either by comparing results generated from

reduced data sets with those based on a full data set

(Atkinson et al., 1994), or by comparing their spatial

properties (Chang et al., 1998).

The purpose of this study was to determine how

spatial uncertainty in SOC pools might affect estimates

of SOC storage in a subtropical savanna landscape where

woody plants have increased in abundance during the

past century. Specific objectives were to: (1) quantify

the spatial pattern and uncertainty of SOC; (2) evaluate

the performance of different sampling designs in esti-

mating SOC storage; and (3) develop efficient and effec-

tive sampling designs for estimating soil attributes in

landscapes with complex vegetation patterns.

Methods

Study site

The study was conducted at the Texas AgriLife La Copita

Research Area (LCRA, 271400N, 981120W), 65 km west of

Corpus Christi, Texas. Elevation ranges from 75 to 90 m above

sea level. The climate is subtropical with warm, moist winters

and hot, dry summers. Mean annual temperature is 22.4 1C

with an average growing season of 289 days. Mean annual

precipitation is 680 mm with bimodal peaks in May and

September. Uplands are characterized by sandy loam soils

(Typic and Pachic Argiustolls), whereas lowlands and playas

have clay loam or clay soils (Pachic Argiustolls). The site has

been continuously grazed by cattle since the late 1800s until

its designation as a research area in early 1980s, at which time

progressive livestock grazing management practices were

implemented.

The landscape grades with gentle slopes (o3%) from up-

lands to drainage lowlands and bottom playas. Uplands are

savanna parklands with discrete woody patches scattered in a

continuous C4 grassland matrix (Fig. 1a). Woody patches

include smaller shrub clusters (generally o100 m2) and larger

groves (generally 4100 m2). Shrub clusters typically consist of

a central honey mesquite (Prosopis glandulosa) tree with a

diverse assemblage of understory shrub species beneath its

canopy. Discrete shrub clusters expand laterally and coalesce

to form groves with overlapping mesquite canopies (Archer,

1995; Bai et al., 2009). Shrub clusters and grasslands occur

where the argillic horizon is well-expressed, whereas groves

occur on soils lacking an argillic horizon; and plants in groves

are larger than those in clusters. Understory shrub species

composition is similar in both clusters and groves. Common

species include Zanthoxylum fagara, Celtis pallida, Condalia

hookeri, Diospyros texana, Schaefferia cunefolia, Ziziphus obtusifolia

and Berberis trifoliolata. The herbaceous grassland matrix is

dominated by C4 grasses including Paspalum setaceum, Setaria

geniculata, Bouteloua rigidiseta, and Chloris cucullata, but also

has a significant C3 forb component.

Field sampling

Sequential temporal sampling of SOC subsequent to the estab-

lishment of shrubs would be the most direct way to evaluate
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effects of vegetation change on soil properties. However, SOC

changes induced by shrubs take place over the course of

decades to centuries (Hibbard et al., 2003; Boutton et al.,

2009) and long-term plots with such documentation do not

exist. The formation of shrub communities in grasslands at our

field site is initiated with the establishment of mesquite

(Archer, 1995). Hence, the age of woody patches corresponds

to the age of the largest mesquite in that patch; and SOC

increases with mesquite age (Boutton et al., 2009). We capita-

lized on this knowledge of shrub community development to

quantify spatial uncertainty of SOC in different woody ele-

ments using a space-for-time substitution approach, assuming

spatial variation along mesquite bole (point of longest shrub

influence) to canopy dripline (point of most recent shrub

influence) transects represent time; and that processes deter-

mining shrub influences on spatial patterns are consistent over

time.

A 160 m� 100 m plot divided into a grid of 10 m� 10 m cells

was established on the upland portion of a landscape in

January 2002. The corners of each cell were georeferenced

using a GPS unit (Trimble Pathfinder Pro XRS, Trimble Navi-

gation Limited, Sunnyvale, CA, USA), given a unique identi-

fication number (X, Y coordinate) and marked with a PVC pole

fastened to rebar. Two random points within each cell were

selected for soil sampling (320 total, Fig. 1a). Distances from

each soil sampling point to two uniquely identified cell corners

were measured. Vegetation cover at each sample point was

recorded as grassland, shrub cluster or grove.

Color infrared aerial photography was acquired in April

2003 for the plot. Negative photography was scanned (0.25 m

nominal resolution), georeferenced using ERDAS Imagine

(ERDAS, 1999) and subjected to unsupervised classification

with the Iterative Self-Organization Data Analysis (ISODATA)

method (ERDAS, 1999). This classification initially grouped

pixels into 30 classes based on reflectance value similarities;

and these were subsequently collapsed into one of two classes:

woody or nonwoody. Woody patches o1 m2 were treated as

nonwoody because data showed little difference in SOC

between grasslands and clusterso1 m2 canopy area (S. R.

Archer et al., in preparation). Woody patches 41 m2 were

subsequently classified as either clusters (1–100 m2) or groves

(4100 m2) based on canopy area. The classified vegetation

map is shown in Fig. 1b.

In addition to the random soil samples mentioned above,

three groves, five clusters, and three grassland subplots were

designated via a directed random process for intensive sam-

pling (Fig. 1b). The three groves selected were large, medium,

and small in size (areal extent); and each was divided into a

grid of 5 m� 5 m cells. PVC poles anchored to rebar were used

to mark the corners of each cell and their coordinates were

determined using the GPS unit mentioned above. Two random

points were located within each cell for soil sampling. Soils

were also collected along tree-to-tree transects (n 5 3 per

grove) radiating from near the grove center and into adjoining

grasslands. Soil samples were collected at the following loca-

tions along these transects: (a) the bole of each tree, (b) mid-

way between the bole of each tree and its canopy dripline, and

(c) canopy dripline. Coordinates of soil sample points in grid

cells and along transects were determined by measuring

distances to two uniquely identified cell corners. A total of

63, 37, and 24 soil samples were collected from three groves,

respectively.
Five shrub clusters were selected via a directed random

process for intensive sampling. For each shrub cluster, trans-

ects (n 5 3) radiated from the cluster center into the adjacent

grasslands with orientations ca. 1201 from each other. Each

transect consisted of seven soil sample points, determined by

Fig. 1 (a) Aerial photograph of the 160 m� 100 m plot within a

sandy loam upland savanna parkland landscape (1%–3% slope)

and locations of 320 random soil samples (dark points). Dark

patches are shrub clusters and groves and light grey color

indicates open grassland. (b) Classified vegetation map of the

plot showing locations of intensively sampled shrub clusters,

groves, and grassland subplots. (c) Kriged map of soil organic

carbon (SOC, g C m�2) of the plot based on 320 random points.
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their relative locations along the transect: (a) the center of each

shrub cluster (near mesquite bole), (b) one-third the distance

between the cluster center and its canopy dripline, (c) two-

third the distance from the center to the canopy dripline, (d)

15 cm inside canopy dripline, (e) 15 cm beyond the canopy

dripline, (f) beyond the canopy dripline at a distance equal to

one-third the distance between the shrub cluster center and its

canopy dripline, and (g) beyond the canopy dripline at a

distance equal to two-third of the distance from the cluster

center to its canopy dripline (Fig. 1b). Additional soil samples

were collected at three or four random locations within canopy

of each shrub cluster. A total of about 25 soil samples were

thus collected for each cluster. Steel rebars (n 5 4 or 5) were

installed in each cluster as reference markers and their co-

ordinates determined using a high-resolution GPS. Coordi-

nates of soil sample points were determined by measuring

distances to two uniquely identified steel rebars.

Three grassland subplots (6 m� 10 m) were also established.

Each grassland plot was divided into a grid of 2 m� 2 m cells

whose corners were marked with rebar. Corners were geor-

eferenced using a high-resolution GPS and assigned a unique

identification number (X, Y coordinate). Four random points

were selected within each cell for soil sampling (Fig. 1b).

Coordinates of each soil sample point were determined by

measuring the distances to the two nearest cell corners. A total

of 60 soil samples were collected in each grassland plot.

All soil samples were collected to a depth of 15 cm using a

2.24 cm diameter corer. Soil samples were collected during 2

multiple-day periods in December 2002 and January 2003

respectively. Surface litter, if present, was brushed away before

coring. Two adjacent soil cores were collected at each sampling

point. SOC was determined from one core; and soil bulk density

from the other. Coordinates of these soil-sampling points were

calculated and imported into ArcGIS (ESRI, Redlands, CA,

USA). Groves, shrub clusters, and grassland plots were sur-

veyed for visible animal disturbance (e.g., burrows, excavations,

wallows, nests, etc.). Animal disturbances were delineated in

relation to known georeferenced points (e.g., cell corners).

Laboratory analysis

Soil cores for SOC were dried at 60 1C for at least 48 h, passed

through a 2 mm screen to remove gravel and coarse organic

fragments, and then pulverized to a fine powder in a centri-

fugal mill (Angstrom Inc., Belleville, MI, USA). Samples were

weighed into silver capsules (5� 7 mm) using a microbalance,

treated with HCl vapor in a desiccator to remove carbonates

(Harris et al., 2001), and dried. SOC concentration (%) was

determined by combustion/gas chromatography using a Car-

lo Erba EA-1108 (CE Elantech, Lakewood, NJ, USA) elemental

analyzer. Soil bulk density was determined by the core meth-

od. SOC concentration was converted into density (g C m�2 to

a depth of 15 cm) by multiplying soil bulk density.

Data analysis

ANOVA (SPSS for Windows version 12.0, SPSS Inc., Chicago, IL,

USA) using the 320 random samples were conducted to

compare SOC density in grassland, shrub cluster, and grove

vegetation types. A sample variogram fitted with a variogram

model (VARIOWIN version 2.2; Pannatier, 1996) was then con-

structed to quantify SOC spatial pattern using the same 320

random samples; and Kriging (GSLIB; Deutsch & Journel,

1998) was used to predict SOC at unsampled locations.

SIS, a type of conditional stochastic simulation (Isaaks &

Srivastava, 1989), was used to quantify spatial uncertainty of

SOC. We used SIS (SISIM program of GSLIB; Deutsch &

Journel, 1998) to generate multiple alternative estimates, each

of which honored the global statistics and the spatial structure

of the 320 random samples. We ran 500 simulations of SOC for

1� 1 m cells using the 320 randomly collected soil samples.

The standard deviation (SD) of SOC estimates in a given cell is

an indication of the degree of uncertainty in the estimate of

SOC at that location (Isaaks & Srivastava, 1989; Rossi et al.,

1993; Goovaerts, 2001). The cutoffs used to transform sample

SOC into an indicator variable included nine deciles plus the

SOC densities at the 0.05 and 0.95 cumulative distribution

fractions. VARIOWIN (Pannatier, 1996) was used to construct

sample variograms and to fit variogram models at each cutoff.

Means and SDs of SOC from the 500 SISs were overlaid with

the classified vegetation map in ArcGIS to examine the spatial

pattern and uncertainty of SOC in each vegetation type. This

enabled us to generate a complete set of SOC means and SDs

within each vegetation type (grassland, shrub cluster and

grove). Frequency distributions of SOC means and SDs were

then developed for each vegetation type.

Sampling designs

Complete random sampling in different vegetation types.
Kriging of SOC density was first conducted using all data in

the 160� 100 m plot [random samples from 10� 10 m cells,

along with transect (clusters, groves), grid cell (grassland), and

random data from the three vegetation types]. The sampling

intensity in these sampled plant communities was very high:

ca. 800 ha�1 for groves, ca. 500 ha�1 for shrub clusters, and

1000 ha�1 for grassland subplots. Kriged maps of SOC within

these communities using all the data were used as baseline

reference maps to which sample methods were compared.

Various intensities of complete random sampling were then

conducted on these vegetation-specific baseline reference

maps to evaluate their accuracy in estimating SOC storage.

Estimation errors were calculated as the absolute difference

between SOC density obtained from random samplings and

the SOC density from the reference maps.

Effectiveness of alternative sampling designs. Proceeding on

the assumption that the kriged maps of intensively sampled

areas of grassland, shrub cluster and grove communities were

representative of the actual SOC density, we extrapolated these

data in a spatially explicit fashion across the 160� 100 m entire

plot using actual percentages of the fractional cover of

grassland, shrub cluster and grove communities derived

from the classified imagery. This extrapolated map was

considered as a complete baseline dataset with reasonably

well-known SOC values.
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Based on the spatial uncertainty of SOC in the different

vegetation types suggested by SIS simulation results, three

alternative sampling designs were applied to the baseline data

set. For each sampling design, total SOC storage for a given

vegetation type was estimated as the product of the mean SOC

density and the area occupied by that vegetation type. Land-

scape-scale storage was then determined by summing the

values for the three vegetation types.

The first design was completely random on the whole plot.

The second design was a stratified random sampling of grass-

land, shrub clusters, and groves with equal sampling intensity.

The third design was a stratified random sampling of vegeta-

tion types with unequal sampling intensities. Preliminary

results, as shown by SIS simulations, indicated a higher spatial

uncertainty of SOC in groves and shrub clusters compared

with grasslands. We therefore set the sampling intensity for

shrub clusters and groves as twice that of the grassland in the

third design. For each alternative sampling design, a range of

overall sampling intensities (10–200 samples ha�1) were used.

This enabled us to compare the accuracy of alternative sam-

pling designs as a function of sampling intensity.

Estimation errors and woody plant cover. Do SOC estimation

errors for grasslands undergoing woody plant encroachment

vary as a function of the type and extent of woody plant cover?

To address this question, estimation errors were calculated for

simulated landscapes with varying percentages of grassland,

shrub cluster, and grove vegetation. In these scenarios, the

ratio of shrub cluster area to grove area was kept constant for

simplicity.

How important are within-community gradients?. Previous

studies at our site have shown that shrub clusters have a

higher mean SOC content than grassland (Archer et al., 2001;

Boutton et al., 2009). In addition, both the magnitude and

variability of SOC decrease exponentially from the centers to

the canopy edges of these communities (S. R. Archer et al., in

preparation). To determine how within-community spatial

pattern of SOC might affect estimation accuracy, we

compared results from random and transect-based sampling

designs against baseline reference maps obtained from

intensively sampled shrub clusters.

Results

Spatial pattern of SOC

The random sampling of 320 points indicated signifi-

cant differences (Po0.001) among vegetation types

(Po0.001). The average SOC density for the upper

15 cm of the soil profile decreased from groves

(x̄ 5 1832 g C m�2; n 5 62) to clusters (x̄ 5 1500 g C m�2;

n 5 29) and grasslands (x̄ 5 1282 g C m�2; n 5 204). SOC

variability was highest in groves [coefficient of variation

(CV) 5 0.23] and lowest in grasslands (CV 5 0.17).

Fossorial rodents [e.g., pack rats (Neotoma micropus)]

and ants (e.g., Atta texana) occur on this site and

influence soils. No surface animal disturbances were

observed in the three 6� 10 m grassland subplots. Only

one of the five shrub clusters sampled had a rodent

burrow disturbance of ca. 2 m2. However, animal dis-

turbances, primarily pack rat nests and burrows (Fig. 2),

along with other small rodent burrows, armadillo

(Dasypus novemcinctus) diggings and collared peccary

(Tayassu tajacu) wallows, were observed in each of the

three groves. The total area impacted by animal dis-

turbances in groves was 5%–9% (data not shown).

SOC was spatially autocorrelated. The spherical mod-

el fitted to the sample variogram had a range of 36.8 m,

which indicates the extent of spatial autocorrelation.

The sill and nugget of the variogram model were

10.92� 104 and 5.07� 104, respectively. The structure

variance to sill ratio, which represents the proportion

of the total variance explained by the spatial structure,

was 0.54. The predicted map of SOC generated by

ordinary kriging using 320 random samples displayed

a spatial pattern similar to that of vegetation cover,

especially the distribution of woody patches (Fig. 1a

and c). The kriged map indicated SOC densities were

the highest in the core regions of woody patches (shrub

clusters and groves), decreasing towards the perimeter

of woody patches and reaching lowest values within the

grassland matrix. The extensive areas of high SOC

density in the southeast corner of the plot were asso-

ciated with a large grove. Grasslands covered 82% of

the area with low SOC densities (o1500 g C m�2). Since

this kriging was based on 320 random points (2 per

10 m� 10 m grid cell), not all woody patches had soil

samples; and hence their impacts on SOC are not fully

represented in Fig. 1c.

Fig. 2 Top down view of a typical pack rat (Neotoma micropus)

disturbance in a Prosopis grove developing on grasslands at the

La Copita site in the Southern Great Plains, TX, USA. Burrow

entrances are covered with twigs and coarse woody debris.

(Photo by Feng Liu).
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Spatial uncertainty of SOC

Spatial patterns of SOC in the SIS simulations were

similar to those in the kriged map of SOC, with the

former exhibiting greater variation than the latter (Figs

1c and 3a). Consistent with the kriged map of SOC, the

map of the means of the 500 simulations showed that

SOC was closely related to the spatial distribution of

woody vegetation (Figs 1a and 3a), with core regions of

shrub clusters and groves having high SOC densities

that attenuated towards canopy edges.

SDs of SOC based on the 500 SIS simulations quantify

the amount of uncertainty associated with estimates of

SOC at a given location (Fig. 3b). Higher SDs indicate

higher spatial uncertainty. Uncertainty for SOC was

typically greatest within portions of the landscape

dominated by woody plants and lowest in grassland

areas.

Frequency distributions of mean simulated SOC den-

sities demonstrated that the grassland areas typically

had lower SOC densities with a relatively narrow

spread, indicative of low spatial variability (Fig. 4a).

Shrub clusters had a frequency distribution similar to

that of grassland, but with higher frequencies at ca. 1250

and 1450 g C m�2. In contrast to grasslands and shrub

clusters, groves had a notably higher proportion of high

mean SOC values. The range of SOC densities in groves

was also substantially wider than that in shrub clusters

and grassland, another indication of greater SOC varia-

bility in groves compared with clusters and grassland.

Grassland and shrub clusters also had similar fre-

quency distributions of SDs in simulated SOC densities,

with the exception of higher frequencies around

260 g C m�2 in shrub clusters (Fig. 4b). The SDs of

simulated SOC densities in groves were much higher

than those in shrub clusters and grassland, indicating

substantially greater uncertainty in SOC estimates in

this vegetation type.

Sampling designs

Estimation errors associated with complete random

sampling decreased with increasing sampling intensity

for all vegetation types (Fig. 5a). At any given sampling

intensity, shrub clusters consistently had the highest

estimation errors and grasslands the lowest, suggesting

SOC in shrub clusters was more variable than that in

grassland. Estimation errors in groves decreased dra-

matically as sampling intensity increased to approxi-

mately 50 samples ha�1, suggesting a threshold in

sampling intensity for estimating SOC via complete

random sampling in this vegetation type. Shrub clusters

did not exhibit a clear threshold sampling intensity, but

error appeared to be minimized at ca. 500 samples ha�1,

Fig. 3 Mean (a) and standard deviation (b) of soil organic

carbon (SOC, g C m�2) derived from 500 sequential indicator

simulations based on the 320 random sample points in Fig. 1a.

(a)

(b)

Fig. 4 Frequency distribution of soil organic carbon (SOC)

means (a) and standard deviations (b) within intensively

sampled grassland subplots, shrub clusters, and groves based

on results from 500 sequential indicator simulations.
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an order of magnitude greater than that in groves and

3.3 times that of grasslands.

Consistent differences in estimation error occurred

among the three sampling regimes (complete random

sampling, stratified random sampling with equal den-

sity, and stratified random sampling with unequal

density) when tested using the extrapolated data set

(Fig. 5b). Stratified random sampling with unequal

intensities (higher sampling densities in shrub clusters

and groves) generated the lowest estimation error

and complete random sampling the highest, regardless

of sampling intensity. At low sampling intensities

(o50 ha�1), estimation error in the complete random

sampling decreased more quickly than the other two

designs as sampling density increased. When sampling

intensity reached ca. 100 ha�1, estimation errors of all

three designs leveled off, suggesting further increases in

sampling density would not substantively improve

estimation accuracy.

Results of the complete random sampling experi-

ments on simulated landscapes indicate that errors in

estimates of SOC storage would steadily increase with

increasing shrub cover, regardless of sampling intensity

(Fig. 5c).

Sampling along center-to-edge transects consistently

yielded better estimation of SOC density than random

sampling in shrub clusters known from previous work

to have strong gradients of SOC (Table 1). This was

generally true even when the number of random sam-

ples was relatively high. Using sample points from the

middle section of the center-edge transect yielded less

estimation error than using samples obtained near the

center or obtained near the canopy edge. A sampling

(a)

(b)

(c)

Fig. 5 Error (%) of soil organic carbon (SOC) estimates as a

function of sampling intensity (samples ha�1) on kriged maps of

intensively sampled grasslands, shrub clusters, and groves. (a)

Complete random sampling on intensively sampled plots; (b)

Complete random, stratified random with equal density (ED) in

grassland and woody patches, and stratified random with un-

equal density (UED) in grassland and woody patches and (b)

complete random sampling on simulated landscapes with dif-

ferent percentages of woody cover, assuming a constant ratio of

shrub cluster and grove area.

Table 1 Estimation error of SOC for different sampling

designs in shrub clusters

Number of

samples Sampling design

Estimation

error (%)

1 Random 25.54

(b or c) 18.68

2 Random 20.61

(b or c) for two clusters 13.85

(b, c) 11.15

3 Random 17.58

(b or c) for three clusters 12.66

(b, c, d) 9.25

4 Random 15.66

(b or c) for four clusters 9.71

(b, c) for two clusters 7.95

(a, b, c, d) 9.31

5 Random 11.21

(b or c) for five clusters 10.53

(b, c), (b, c, d) 6.98

6 Random 10.84

(b or c) for six clusters 9.19

(b, c) for three clusters 6.62

(b,c, d) for two clusters 7.5

Letters indicate soil samples inside clusters along transects: (a)

near the center of the cluster; (b) one-third the distance

between the cluster center to canopy dripline; (c) two-third

the distance between the cluster center to the canopy dripline;

(d) 15 cm inside cluster canopy dripline.

SOC, soil organic carbon.
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regime consisting of two or three points on one transect

within one cluster yielded better results than sampling

a single point in multiple clusters, regardless of whether

that single point was selected at random or from a

targeted location.

Discussion

Land cover change in drylands often involves the dis-

placement of herbaceous life forms with woody life

forms. This shift in vegetation is often in response to

extensive livestock grazing which has the concomitant

effect of reducing fire, herbaceous primary production,

and ground cover (Archer, 2009). These grazing-in-

duced changes may substantially alter SOC pools, albeit

in ways that are difficult to generalize (Milchunas &

Lauenroth, 1993; Derner et al., 2006), and thus influence

patterns of SOC and its spatial variability before and

during the course of shrub encroachment. Once estab-

lished, shrubs alter soils in and around their canopies in

a variety of ways, both direct and indirect (Virginia,

1986). The resulting ‘islands of fertility’ wherein SOC

and soil nutrients accumulate as a result of shrub stem

flow, above- and belowground shrub litter inputs or

translocation of nutrients from intercanopy areas to

zones beneath shrub canopies via extensive lateral root,

aeolian, fluvial, or animal transport processes, can thus

transform grasslands with a relatively homogenous

distribution of SOC to shrublands with a very hetero-

geneous distribution of SOC (e.g., Schlesinger et al.,

1990; Hibbard et al., 2001; Ravi et al., 2007; Okin et al.,

2009). The contrast in SOC between shrub islands and

the herbaceous zones that separate them increases with

time of shrub occupation (Wheeler et al., 2007; Throop &

Archer, 2008; Boutton et al., 2009) and diminishes when

shrubs die (McClaran et al., 2008). Characterizing land-

scape-scale changes in SOC pools within the context of

woody plant encroachment thus presents numerous

challenges. A key first step in addressing this challenge

and improving our estimates of land cover change

effects on SOC pools is to understand their spatial

uncertainties.

Spatial uncertainty of SOC and sampling designs

Spatial uncertainty of ecosystem properties is related to

their underlying spatial patterns, and its elucidation is

influenced by the number of samples, sampling de-

signs, and the spatial distribution of samples (e.g.,

Buscaglia & Varco, 2003; Conant et al., 2003). SIS has

been effective in quantifying spatial uncertainty of

ecological variables (Rossi et al., 1993; Goovaerts, 2001;

Juang et al., 2004; Zhao et al., 2005); and in this case

illustrated how the spatial uncertainty of SOC estimates

increase when woody plant communities develop on

grassland. It should be noted that the results from this

work reflect shrub communities that are relatively

young (o100-year-old) from a SOC perspective (Archer

et al., 2004; Bai et al., 2009); and dynamic simulations

suggest it may take another 100 or more years to reach a

carbon steady state (Hibbard et al., 2003). During that

time SOC heterogeneity may peak (if it has not already

done so) and subsequently become more uniform.

Although shrub cluster landscape elements had a

comparable or lower degree of spatial uncertainty in

SOC estimates compared with grasslands and groves

(Fig. 4b), SOC estimation errors in the complete random

sampling design were considerably and consistently

higher for shrub clusters (Fig. 5a). There are two prob-

able explanations for this discrepancy. Firstly, our ran-

dom sampling design and intensity may not have been

sufficient to adequately capture the spatial uncertainty

of SOC in shrub clusters. Shrub clusters are relatively

small (ca. 10–65 m2 on the sampled landscape) and only

two random samples were collected per 100 m2 cell.

Simulations based on these relatively few random sam-

ples may therefore have failed to capture the spatial

variability of SOC in shrub clusters as few or no random

sample fell within them (Fig. 1a). Secondly, SOC in

shrub clusters declines steadily along a gradient ex-

tending from the center of clusters (where shrubs have

been present and influencing soils for the longest time)

to their canopy edge (where shrub influences on SOC

would have been relatively recent) (S. R. Archer et al., in

preparation). Similar gradients of SOC have also been

described for other shrub-invaded grasslands (Throop

& Archer, 2008). Complete random sampling performed

poorly in this setting compare to transect sampling

designs taking the spatial pattern into consideration

(Table 1).

Our analyses also revealed that sampling one shrub

cluster with two or three samples was more effective at

reducing estimation error than taking single samples

from multiple clusters. Furthermore, sampling more

clusters with sufficient sample intensity and spatial

arrangement yielded better results than random sam-

pling at higher densities in fewer clusters (Table 1).

More widespread and smaller sampling blocks would

also generate more power in testing significance when

spatial autocorrelation is present (Legendre et al., 2004).

These results illustrate the need to carefully consider

spatial patterns when designing sampling regimes to

estimate SOC and other soil attributes in land-

scapes characterized by mixtures of contrasting plant

communities.

The high spatial uncertainty of SOC in groves

(Fig. 4b) potentially reflects several interacting factors.

First, SOC is known to be strongly influenced by
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root and surface litter biomass (Boutton et al., 1998,

2009; Hibbard et al., 2001; Rasse et al., 2005); and mean

(� SE) litter and root biomass were much higher in

groves than in grassland (litter: groves 542 � 59 g m�2,

grasslands 30 � 3 g m�2; roots, 0–15 cm depth: groves

696 � 68 g m�2, grasslands 195 � 17 g m�2) (Liu et al.,

2009). In turn, SOC density was higher and more

variable in groves (CV 5 0.35) than in grassland

(CV 5 0.15), which makes estimation of SOC less accu-

rate (more uncertain) in these landscape elements.

Second, faunal disturbances, well-known to locally im-

pact soils (e.g., Greene & Reynard, 1932; Titus et al.,

2002; Whitford, 2002), were common in groves. How-

ever, there are virtually no such disturbances in grass-

land and little in clusters. Third, groves have more

complex and variable vegetation structure than that in

clusters and grassland (Archer, 1995), which may also

affect the spatial distribution of root and litter mass.

Sampling strategies for complex landscapes

Given the widespread occurrence of shrub encroach-

ment into grasslands around the world, there is con-

siderable interest in quantifying the potential impacts of

woody expansion on global carbon pools (Houghton &

Hackler, 2000; CCSP, 2007; Asner & Archer, 2009).

However, detection of change in SOC pools resulting

from vegetation cover change is challenging due to

complications caused by spatial variability, land use

legacies, erosion, and small signal to noise ratios (Con-

ant et al., 2003). Results from this study are consistent

with other studies showing that woody plant invasion

into grassland ecosystems increases the spatial hetero-

geneity of soil properties (Archer, 1995; Schlesinger

et al., 1996; Bekele & Hudnall, 2006). This elevates the

challenge of accurately quantifying changes in SOC

pools. Studies of woody plant encroachment effects on

SOC pools to date are typically quite limited in their

sample density and distribution and this may partially

account for the wide divergence of perspectives (ran-

ging from increases to decreases to no change) as to

how this vegetation change has affected SOC (Wessman

et al., 2004). Spatial autocorrelation in ecological vari-

ables affects classic tests of statistical significance

(Legendre et al., 2002) and should be considered in the

design of experiments and field surveys (Dutilleul,

1993; Cole et al., 2001; Hewitt et al., 2007). Results of

this study illustrate the need to design efficient point

sampling strategies for quantifying SOC storage in

complex landscapes where spatial variability must be

considered and quantified. Our sampling experiments

provide a basis and some guidelines in developing such

sampling strategies.

Nested (Bellehumeur & Legendre, 1998) or systematic

grid point or grid cell sampling (Buscaglia & Varco,

2003) was suitable for quantifying spatial structures of

soil properties in our grassland system undergoing

shrub encroachment. Our results indicated that random

sampling, stratified within a systematic grid, worked

well in capturing the overall spatial pattern of SOC on a

landscape comprised of multiple vegetation elements.

However, results of the SIS simulations revealed

marked differences in spatial variability and uncer-

tainty among vegetation elements. As a result, accurate

estimates of SOC density can be achieved by systematic

or nested sampling in some settings, whereas sampling

stratified by vegetation elements with differential sam-

pling intensities is required on others. Sampling designs

demonstrated the importance of structured sampling

within vegetation elements characterized by strong

within-unit spatial patterns (shrub clusters) where

SOC density can not be reliably estimated with a ran-

dom design. Thus, when multiscale spatial patterns

occur, incorporation of spatial structures at different

scales into experimental and sampling designs is essen-

tial (e. g., Noda, 2004). Our results suggested an ap-

proach combining stratified random sampling with

unequal point densities and transect sampling of land-

scape elements exhibiting strong internal gradients

yield best estimate of SOC density while capturing the

spatial pattern of SOC at both broad and fine scales.

Decisions on how to allocate sampling effort among

landscape elements could be informed by preliminary

surveys.

The sample distribution and intensity needed to

account for spatial pattern and uncertainty (Hewitt

et al., 2007) must be balanced against the cost of sample

collection, preparation, and analyses. Several general

recommendations can be offered to achieve this balance

in arid and semi-arid landscapes where complex spatial

pattern exist for a variable(s) of interest: (1) conduct a

preliminary survey to explore spatial structures within

specific vegetation types and estimate the appropriate

sampling intensity for each, (2) use (1) to develop a

stratified random sampling protocol with unequal den-

sities in different landscape elements according to their

variability or uncertainty, (3) use structured sampling

(e.g. transects) within landscape elements with strong

spatial patterns (shrub clusters in our case).

Woody plant invasion of grassland ecosystems is

a geographically extensive phenomenon that has the

potential to significantly alter global biogeochemical

cycles (Schlesinger et al., 1990; Houghton et al., 1999;

Asner et al., 2004; Knapp et al., 2008). Evaluation of the

effects of this land cover change on regional or global

carbon cycles requires the extrapolation of fine scale,

local inventories of SOC storage to broad scales. Spatial
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heterogeneity of soil properties is amplified as woody

plant abundance increases in grasslands, thus making it

more difficult to accurately estimate the impact of this

vegetation change on SOC (Fig. 5c). This study demon-

strates how spatial pattern and uncertainty of SOC

influence the accuracy of its estimation in heteroge-

neous landscapes characterized by cooccurring plant

life forms. The guidelines suggested herein will im-

prove the efficacy of sampling aimed at quantify-

ing edaphic responses to changes in land cover and

land use.
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