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Relationships between species abundance and occupancy are of considerable interest in
metapopulation biology and in macroecology. Such relationships may be described
concisely using probability models that characterize variation in abundance of a
species. However, estimation of the parameters of these models in most ecological
problems is impaired by imperfect detection. When organisms are detected imperfectly,
observed counts are biased estimates of true abundance, and this induces bias in stated
occupancy or occurrence probability. In this paper we consider a class of models that
enable estimation of abundance/occupancy relationships from counts of organisms that
result from surveys in which detection is imperfect. Under such models, parameter
estimation and inference are based on conventional likelihood methods. We provide an
application of these models to geographically extensive breeding bird survey data in
which alternative models of abundance are considered that include factors that
influence variation in abundance and detectability. Using these models, we produce
estimates of abundance and occupancy maps that honor important sources of spatial
variation in avian abundance and provide clearly interpretable characterizations of
abundance and occupancy adjusted for imperfect detection.
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With the introduction of the metapopulation concept

(Levins 1969, Hanski 1999), considerable theoretical and

practical attention has been focused on patch occupancy

and related metapopulation concepts. Patch occupancy

has replaced abundance as the state variable of interest

in many animal population studies. At least in part, this

is because many interesting ecological phenomena are

naturally expressed in terms of occupancy metrics or

related quantities (e.g. species range) but also because

occurrence is simpler to quantify in many problems.

Interest in patch occupancy, at least in a population

monitoring context, is often motivated by its likely

relationship to abundance. That is, site occupancy is

believed to be an informative index to population status.

A recent paper by He and Gaston (2003) focused on

general phenomenological models for both the relation-

ship between occupancy and abundance (Wright 1991,

Hanski et al. 1993) and the relationship between the

mean and variance of abundance over space (Taylor

1961). They combined the two general models into a

single model and stated: ‘‘the unification of the two

general ecological patterns of variance/mean and occu-

pancy/abundance implied by the model is novel and has

not apparently been reported and investigated before’’

(He and Gaston 2003: 366). Then, using several data

sets, they estimate one of these two general relationships

and used the resulting parameters to predict the other

relationship in order to provide evidence that these two

relationships ‘‘are just different expressions of the same

phenomenon’’ (He and Gaston 2003: 367).

In the present paper, we offer two suggestions for

modeling and investigating the relationships discussed
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by He and Gaston (2003). The first suggestion is that it is

useful to view these relationships not through the

combination of two phenomenological models but as a

natural consequence of the fact that all three quantities

of interest, abundance, occupancy, and variance in

abundance, are completely specified by the species

abundance distribution. Most commonly used discrete

probability models needed to describe such distributions

impose structural relationships between variance and

mean. In addition, abundance and occupancy are

expressed as parameters, quantiles, or other functions

of the parameters of such distributions. Thus, the

relationships emphasized by He and Gaston (2003)

emerge directly from species abundance distributions.

For example, we recently elaborated on the funda-

mental relationship between occupancy and abundance

(Royle and Nichols 2003). Specifically, let Ni be the

abundances of a species in a set of disjoint regions (or

spatial locations) i�/1, 2, . . . , R. If the Ni are viewed as

realizations of a random variable with density g(N; u),

then occurrence probability (patch occupancy, denoted

by c) is simply Pr(N�/0; u). Thus, a characterization of

the abundance distribution, yields a characterization of

occurrence probability. Obviously, quantiles of g may be

expressed in terms of the parameters u (i.e. mean and

variance) as discussed at length by He and Gaston

(2003). For example, if N is Poisson, then

c�1�g(0; l)�1�e�l (1)

If N is negative binomial with mean m and over-

dispersion parameter k, then

c�1�g(0; m; k)�1�
�

1�
m
k

��k

(2)

Although the focus of our paper was on occupancy and

abundance, structural mean/variance relationships are

imposed by consideration of any particular abundance

distribution. Importantly, inference about the precise

linkage between mean/variance and abundance/occu-

pancy from observational data is therefore a model

selection problem (see Application).

Our second suggestion for the study of these relation-

ships involves the recognition that species are virtually

never detected with certainty. Thus, while detection of a

species at a location may be unambiguous, failure to

detect the species may be a consequence of either true

absence of the species or presence, but failure to detect

(Bayley and Peterson 2001, Kéry 2002, MacKenzie et al.

2002, 2003, Moilanen 2002, Royle and Nichols 2003,

Tyre et al. 2003, Gu and Swihart 2004). Thus we

recommend direct incorporation of detection probability

parameters into any attempts to draw inferences about

abundance and occupancy and the true underlying

parameters of interest. This is important because factors

that influence detectability may vary spatially and

temporally, and thus variation in observed counts

cannot be attributed solely to variation in abundance.

Importantly, occurrence probability will be under-stated

when simple counts are regarded as true abundance.

Although He and Gaston (2003) noted the importance

of detectability, they estimated relationships between

occurrence and abundance assuming that abundance is

observable without error. We note in passing that most

of the evidence for the two general relationships

emphasized and combined by He and Gaston (2003)

also failed to use the inference methods (Seber 1982,

Williams et al. 2002) needed to deal with the funda-

mental reality that perfect detection is seldom encoun-

tered in field sampling of animal populations.

Recognizing that occupancy is not generally detected

with certainty, Bayley and Peterson (2001), MacKenzie

et al. (2002, 2003) describe an approach for estimating

occupancy from detection/non-detection data, but with-

out considering the relationship between occupancy and

abundance. Royle and Nichols (2003) extended this work

by exploiting the relationship between heterogeneity in

detection probability and variable abundance in order to

estimate the abundance distribution and occupancy from

simple detection/non-detection data. Royle (2004a) ela-

borated on an extension of this approach to modeling

abundance from counts that are assumed to have a

binomial sampling distribution. Under these models, it is

possible to estimate abundance distribution parameters,

and hence occupancy, when detection probability is less

than 1.

In this paper we elaborate on these two suggestions by

considering inference about the relationship among

occupancy, abundance and variance in abundance in

the case where organisms are imperfectly detected

(detection probabilityB/1). Drawing on a considerable

body of recent work that deals with estimation and

modeling in the presence of imperfect detection, we

describe a theory for statistical inference about mean/

variance�/occupancy/abundance phenomena in the pre-

sence of imperfect detection of organisms. This theory

incorporates the basic structnral elements that were the

focus of He and Gaston (2003), and includes inference

procedures based on observable qnantities as elaborated

by Kéry (2002), MacKenzie et al. (2002, 2003), Royle

and Nichols (2003), Tyre et al. (2003), Gu and Swihart

(2004), and Royle (2004a).

In the following section we describe a common type of

data structure that enables estimation of abundance/

occupancy models in the presence of imperfect detec-

tion. In the next section we describe estimation of these

models via maximum likelihood. An application to

modeling abundance and occurrence of birds in the

presence of imperfect detection is given in Application.

We conclude with some general discussion and consid-

erations for further development of these models.
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Data structure and models

In the present development, we assume that animals are

counted at R spatial locations (‘‘sites’’) i�/1, 2, . . . ,R
such that the counts can be viewed as realizations of a

binomial random variable with index Ni (local abun-

dance) and detection probability p. Denote these counts

as yi, and let

yi�Bin (Ni; p)

indicate that yi has this binomial probability distribu-

tion. It is not possible to estimate or model variation in

abundance free of detection probability without addi-

tional information. In many animal sampling problems,

a simple way to acquire this additional information is to

generate replicate counts (in time) under the conven-

tional ‘‘closed population’’ assumption that no gains or

losses occur over the duration of the replicate sampling.

That is, let yit; t�/1, 2, . . . ,T be independent counts made

at sites i�/1, 2, . . . ,R so that

yit�Bin (Ni; p); t�1; 2; . . . ;T

That local abundance, Ni, is constant for each replicate

sample (t) at location i is the manifestation of the closure

assumption.

For clarity, the binomial sampling model has been

expressed with constant detection probability across sites

and samples within sites. However, one may consider the

general case where p varies spatially and temporally,

perhaps in relation to measurable covariates. We provide

such an example in Application.

Under this binomial sampling model, the joint like-

lihood of the data from all sites is the product binomial

L(fNig; p½fyitg)�
YR

i�1

�YT

t�1

Bin (yit; Ni; p)

�
(3)

containing the collection of abundance parameters

{Ni}�/(N1, N2, . . . ,NR) and detection probability p

(and any parameters that describe variation in detection

probability). Although this likelihood is not inherently

intractable, practical considerations in many problems

render it so. In particular, there are a large number of

unknown ‘‘parameters’’, and often the observed counts

at each site are relatively sparse owing to low densities of

many animals relative to sample extent.

In part, this statement of the problem as a difficult

estimation problem motivates the need for additional

model structure. However, as noted in the Introduction,

there is considerable ecological interest in models of

abundance and occurrence. This interest provides a

framework that facilitates meaningful inference in the

context of counts observed with imperfect detection. In

particular, specification of a model to describe variation

in abundance among sites is, in effect, a prior distribu-

tion on the unobservable abundance parameters. This

prior distribution is exploited to efficiently combine data

from these spatially referenced samples in order to yield

estimates of model parameters that include both those of

the abundance distribution, and those that describe the

detection process.

Abundance models

Specification of a probability model for abundance,

q(N; u), is fundamental to the problem of conducting

inference based on the sampling model given by Eq. 3.

We note that He and Gaston (2003) elaborated in some

detail on the abundance/occurrence relationships in-

duced by such models, but neglected consideration of

observational models of the sort specified in the preced-

ing section. Subsequently, we provide a brief synopsis of

abundance models before describing the integration of

models for observational data with those of abundance.

The Poisson model is a natural candidate for describ-

ing animal abundance because it arises under the

assumption that individuals are distributed completely

at random. For this reason, it is a standard null model

for the distribution of organisms in many ecological

studies of plants and animals. Under the hypothesis that

individuals are randomly distributed, aggregating over

disjoint (sample) units of constant area yields that Ni has

a Poisson distribution with mean l. For units that are of

varying area, li�/Ail0 where Ai is the area of the ith

unit.

In some problems, it may be important to admit the

possibility that expected abundance varies spatially.

There are two natural extensions of the Poisson model

that accommodate this. First, if there exist covariates

thought to influence abundance, then one might con-

sider the log-linear model:

log(li)�b0�b1xi (4)

where xi is the value of some covariate at location i.

Second, a general form of spatial variation in abundance

is obtained by allowing l to vary stochastically. For

example, if li has a Gamma distribution then Ni has a

negative binomial distribution, which is the most com-

mon model for counts containing excess variation

relative to the Poisson (White and Bennetts 1996). The

negative binomial model with mean m and over-disper-

sion parameter k yields the abundance/occupancy rela-

tionship given in the Introduction (Eq. 2). Factors that

influence abundance may be incorporated into the

negative binomial mean as in the Poisson case:

log(mi)�b0�b1xi (5)

Extra-Poisson variation of the sort described by the

negative binomial model might arise, for example, when

abundance is related to unobserved covariates (i.e. that

have been omitted from the model), or if individuals

occur in clusters. Abundance models other than Poisson

or negative binomial that allow for more flexibility
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in modeling over-dispersion may also be considered

(Bhattacharya and Holla 1965, Puig 2003). In practice,

it may be desirable to formally choose among several

plausible models of abundance given observational data

because more complex (e.g. negative binomial) models

may be unnecessary in some instances.

We emphasize that while the model development

presented here has focused on describing variation in

abundance, the linkage between abundance and occur-

rence is direct. In particular, regardless of the abundance

model under consideration, occurrence probability can

be related to parameters of that abundance model by

evaluating the density at N�/0, corresponding to the

event of non-occurrence. For example, under the Poisson

and negative binomial models the occurrence probabil-

ities are those given by Eq. 1 and 2, respectively.

Consequently, given estimates of the abundance para-

meters (e.g. l̂ under the Poisson, or m̂ and k̂ under the

negative binomial), one may thus obtain estimates of the

probability of occurrence in addition to a characteriza-

tion of abundance and the implied mean/variance

relationship. In the following Section, we describe

estimation of the parameters of these abundance/occur-

rence models by maximum likelihood when individuals

are imperfectly detected.

Parameter estimation by maximum likelihood

The probability model g(N; u) for the unobservable

abundance parameters, {Ni}, in conjunction with the

sampling model Eq. 3 yields what is often referred to as a

hierarchical model (Link et al. 2002, Clark 2003, Wikle

2003). In this model, the abundance parameters are

regarded as random effects for which the conventional

treatment in classical statistics is to remove them from

the likelihood by integration (Laird and Ware 1982).

Estimation is then based on the marginal (or integrated)

likelihood of the data which is a function of u and, in the

present context, parameters of the model which de-

scribes the detection process (nominally, p in Eq. 3).

Under the product binomial likelihood (Eq. 3) for the

count data, the integrated likelihood is:

L(u; p½fyitg)�
YR

i�1

�X�
Ni�0

�YT

t�1

Bin (yit; Ni; p)

�
g(Ni; u)

�

(6)

where g(Ni; u) is the Poisson, negative binomial, or

another suitable (discrete probability density) abundance

model.

Although Eq. 6 does not simplify in a meaningful way,

it can be maximized numerically using conventional

methods that are available in many modern software

packages. Results in the following section were obtained

using the nlm optimizer in the free software package R

(Ihaka and Gentleman 1996).

Maximizing Eq. 6 yields estimates of the parameters

of interest (i.e. those describing abundance and occur-

rence). Furthermore, it is also possible to obtain

estimates of the number of individuals that were

susceptible to sampling (nominally, the ‘‘population

size’’), or even estimates of particular Ni’s (local

population size) using conventional methods of predict-

ing random effects (Royle and Nichols 2003, Royle

2004a). However we expect there is little ecological

interest in obtaining estimates of such small, localized

populations in most cases.

Application

We consider willow tit (Parus montanus ) data collected

as part of the Swiss Breeding Bird Survey (Schmid et al.

2001, Kéry and Schmid 2004, Kéry et al. 2005). This

species is a small (9�/12 g) songbird that inhabits forests

rich in standing dead logs. Data are counts of putative

‘‘territories’’ obtained from applying the territory map-

ping method (Bibby et al. 1992) at 239 sites (1 km

quadrats) distributed in a systematic sample across

Switzerland. Quadrats are sampled 3 times during the

breeding season (15 April�/15 July) along specific routes.

The willow tit is a sedentary species and there are few

movements within this period. Thus, abundance here is

interpreted as the mean number of willow tit territories

per 1 km2.

Primary interest here focuses on estimating abun-

dance and occurrence probability maps from these

data. Importantly, spatial variation in abundance

is fundamental to these objectives. In this regard,

several possible variables affecting abundance were

considered: (1) elevation, E (m); (2) percent forest

cover, F; and (3) route length, L (km). The possibility

of a quadratic elevation effect was also considered

because we expect that the highest densities of

many species occur at mid-elevations. Elevation and

forest cover are natural candidates for describing

avian abundance. On the other hand, route length

is essentially related to effective sampling area. Because

the sample route through each quadrat was not

standardized, the population of territories suscep-

tible to detection is liable to vary depending on route

length.

These abundance covariates were modeled on the log-

mean scale according to

log(li)�b0�b1Ei�b2E2
i �b3Fi�b4Li

where li is the Poisson mean, Ei, Fi and Li are elevation,

forest cover and route length for quadrat i, respectively,

and b0, b1, b2, b3, b4 are the parameters to be estimated.

Analogous model structure was considered for the
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negative binomial abundance model. Elevation (mean�/

1177 m, SD�/646 m) and forest cover (mean�/38.24,

SD�/25.77) were standardized to have mean 0 and

standard deviation 1. Route length was log-transformed

to preserve the desired area-scaling behavior of abun-

dance as sample area is increased.

Likewise, detectability is believed to vary among

surveys (conducted on different days during the breeding

season) because nesting pairs are best detectable during

territory establishment and more elusive during the

incubation and early feeding stages. This suggests the

potential for a nonlinear response of detection prob-

ability to date, and so we considered the possibility of a

quadratic date effect. These potential effects on detec-

tion probability were modeled using a logit-linear model

according to

logit (pit)�a0�a1Dit�a2D2
it

where Dit is the day on which observation t�/(1, 2, 3)

was made on quadrat i and a0, a1, a2 are the detection

parameters to be estimated.

We fit the integrated likelihood models under both

Poisson and negative binomial distributions for abun-

dance. Results for the top 5 models of each class,

according to AIC (Burnham and Anderson 1998), are

summarized in Table 1. We see that the negative

binomial models are favored by AIC, with the most

complex model (containing all of the effects) being

slightly favored to those without either the quadratic

sample day effect, or with no day effect.

The best negative binomial model was used to

construct estimated abundance and occurrence prob-

ability (according to Eq. 2) maps. These are shown in

Fig. 1 and 2, respectively. These maps show the strong

relationship between willow tit abundance/occurrence

and the distribution of forested mid-elevation areas in

Switzerland. The willow tit is not common at lower

elevations, probably because intensive forest use has

eliminated a large part of standing dead trees and,

obviously, it does not occur above the treeline. It reaches

its maximum abundance, and probability of occurrence,

at mid-elevations where forest use is much less intensive.

The estimated optimal elevation for density occurs at

approximately 1446 m. This was obtained as e1evopt�/

0.898/2.159 from the estimated quadratic response of

abundance to elevation (Table 1), and then rescaled by

the mean (1177 m) and standard deviation (646 m).

Discussion

In this paper we have demonstrated how to estimate

abundance and occurrence probability models from

avian count data that are biased by imperfect detection.

These models represent an important generalization over

the ideas suggested by He and Gaston (2003) because

they enable estimation of abundance and occupancy in

the presence of imperfect detection.

The detectability of individuals is an important

consideration when inference is to be conducted about

animal abundance because animals are seldom detected

perfectly. Importantly, factors that influence abundance

and detectability may vary spatially and temporally, and

abundance itself influences the probability of detecting

organisms. Consequently, we believe that inferences

about abundance/occupancy relationships are of little

practical utility when the detectability of organisms is

disregarded and that it is crucial for ecologists to

understand the importance of detectability when at-

tempting to make inferences regarding abundance and

occupancy relationships from observational data.

Detection is especially crucial when interest is focused

on estimating and modeling occurrence, because obser-

vation of zero individuals can arise either because the

species of interest was not present, or because it was

present but not detected. More generally, the linkage

between occurrence and abundance under any para-

metric model is directly influenced by the mean of the

abundance model (e.g. l in Eq. 1 or m in Eq. 2). Thus,

any bias in estimates of mean abundance (such as that

due to non-detection) will yield biased estimates of

occurrence probability. This bias cannot be resolved

without consideration of detectability. The models used

here permit unambiguous inference about the relation-

ship between abundance and occupancy unconfounded

by sampling covariation.

Table 1. Estimates of negative binomial and Poisson abundance model parameters and AIC for the willow tit territory count data.

Model Abundance parameters Detection parameters AIC

k b0 for el e12 len a0 day Day2

NB 1.667 �/1.750 0.773 2.159 �/0.898 1.410 �/0.814 �/0.138 0.038 1048.5
NB 1.692 �/1.703 0.772 2.130 �/0.885 1.400 �/0.773 �/0.089 �/ 1049.3
NB 1.709 �/1.659 0.783 2.076 �/0.898 1.413 �/0.866 �/ �/ 1051.2
NB 1.781 0.428 0.855 2.084 �/0.820 �/ �/0.809 �/0.137 0.037 1052.9
NB 1.799 0.456 0.853 2.057 �/0.807 �/ �/0.768 �/0.090 �/ 1053.6

P �/ �/1.779 0.636 2.363 �/0.874 1.059 0.069 �/0.189 0.074 1212.0
P �/ �/1.714 0.629 2.322 �/0.859 1.025 0.210 �/0.095 �/ 1217.3
P �/ �/1.712 0.633 2.289 �/0.865 1.037 0.153 �/ �/ 1218.9
P �/ �/0.217 0.734 2.350 �/0.807 �/ 0.124 �/0.186 0.067 1232.7
P �/ �/0.202 0.725 2.312 �/0.793 �/ 0.243 �/0.101 �/ 1236.6
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Here we applied a general class of abundance/occur-

rence models based on simple counts (Royle and Nichols

2003, Royle 2004a) to avian count data from the Swiss

Breeding Bird Survey. In addition to parameters which

describe variation in abundance of organisms (He and

Gaston 2003), these models also contain parameters that

describe variation in detection probability. Poisson and

negative binomial models of abundance were considered.

In each case, a number of covariates thought to influence

abundance and detectability were considered. Based on

AIC, the over-dispersed negative binomial model was

favored over the Poisson model. The resulting estimated

abundance and occurrence maps honor variations in

landscape structure that influence bird abundance (e.g.

forest cover, elevation) in addition to structure in the

observed counts that is due to variation in detectability.

Estimates based on our models represent an improve-

ment over other attempts at estimating the relationship

between occurrence and abundance (He and Gaston

2003) because they account for general bias due to

failing to detect all individuals and variations in detect-

ability across time.

We have illustrated the use of simple count data for

estimating abundance and occurrence but note that

many other common sampling protocols (i.e. other

than simple counts) can be employed, including some

that do not require temporally replicated sampling. For

example, double-observer (Nichols et al. 2000), temporal

removal (Farnsworth et al. 2002) and distance sampling

(Rosenstock et al. 2002) have all been used to estimate

avian abundance in the presence of imperfect detection.

Estimation of models of abundance and occurrence from

such data has been elaborated on for these more general

protocols by Royle et al. (2004) and Dorazio et al.

(2004). Various more specialized cases have also been

considered including use of only detection/non-detection

Fig. 1. Abundance map for the
willow tit under the best fitting
negative binomial model.

Fig. 2. Occurrence probability
map for the willow tit under the
best fitting negative binomial
model.
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data, (Royle and Nichols 2003) and ordinal abundance

‘‘index’’ data (Royle 2004b).

Finally, we believe that substantial generalization of

the models applied here can be achieved by considering

demographically open metapopulation systems involving

local extinction and colonization processes. We note that

such models have been developed for sampling that

yields simple detection/non-detection data (MacKenzie

et al. 2003), but not for more general data structures.
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