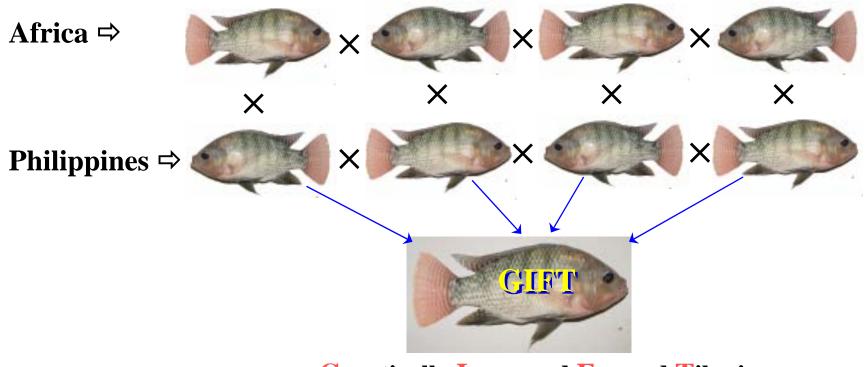
GROWTH PERFORMANCE AND METABOLIC RATES OF GENETICALLY IMPROVED AND CONVENTIONAL STRAINS OF NILE TILAPIA, OREOCHROMIS NILOTICUS (L.)



Shamsuddin M. Mamun, U. Focken, G. Francis and K. Becker University of Hohenheim, 70599 Stuttgart, Germany

September 2004

INTRODUCTION

Tilapia is a most promising protein source in near future

Genetically Improved Farmed Tilapia

GIFT vs. CNT (Conventional Nile Tilapia)

Authors	System	Days	Strain	Conclusion
Circa et al. 1995	Rice-fish	90	GIFT, Is., Se.	All similar
Hussain et al. 2000	Pond	180	GIFT, CNT	GIFT: 57% better
Dey et al. 2000	-	-	GIFT, CNT	GIFT: better 18% (China) 58% (Bangladesh)
Nandlal et al. 2001	Pond	120	GIFT, CNT	GIFT: 25% better

Why is GIFT claimed to perform better?

Because of -

- Higher feed intake
- Better utilization of feed nutrients
- Better feed conversion efficiency
- More aggressive behavior
- Higher metabolic performance

OBJECTIVES OF PRESENT STUDY

Comparison of growth and metabolism of GIFT and CNT by determination of -

- ⇒ Metabolic parameters:
 - Standard metabolic rate (SMR)
 - Routine metabolic rate (RMR)
 - Active metabolic rate (AMR)

⇒ Growth parameters:

- Growth, growth rates and feed utilization efficiency
- Energy budget and energy utilization
- Organo-somatic indices

⇒ Behavioral parameter:

Swimming activity of fish

GIFT are claimed to have >50% better growth performance than CNT, therefore, there are differences

- in metabolic rates (SMR, RMR)
- in growth potential

Experimental fish

Tilapia strain	Sex	Obtained from / when	
GIFT-SR* HTM		GenoMar ASA, Philippines	
GIFT-NSR*	Mixed	December 2002	
CNT-NSR	Mixed	University of Göttingen October 2002	

*Ninth generation (HTM: Hormone treated male)

Components and chemical composition

Basal composition of feed		Proximate composition of feed		
Ingredients %		Composition	%	
Fish meal	50	Dry matter (% FM)	95.1	
Wheat meal	42	Crude protein (% DM)	41.0	
Sunflower oil	4	Crude lipid (% DM)	9.0	
Vitamin premix	2	Ash (% DM)	12.7	
Mineral premix	2	Gross energy (kJ/g DM)	19.9	

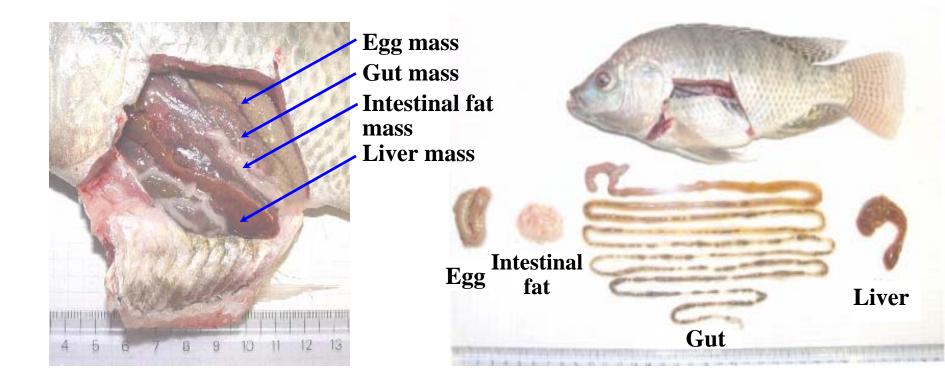
FM = fresh matter, **DM** = dry matter

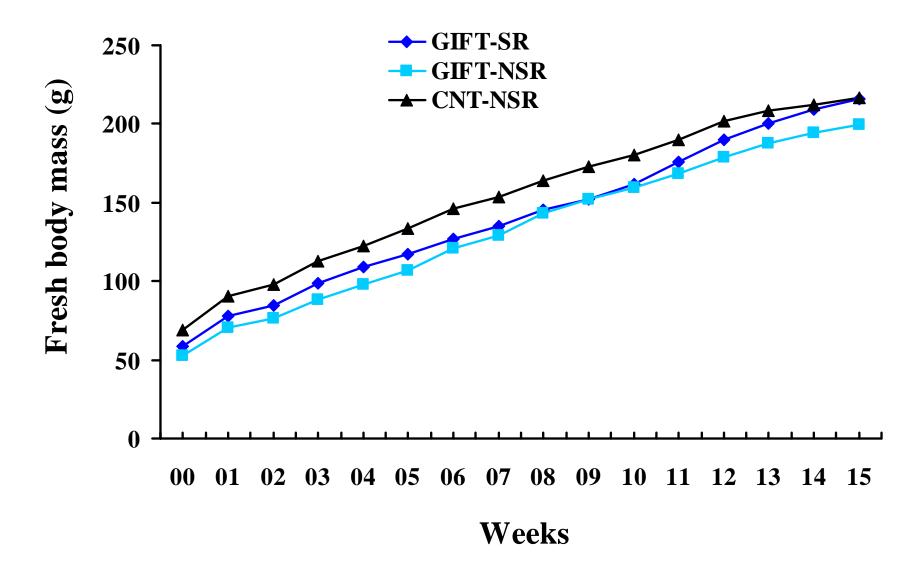
Experimental set up

- ⇒ Recirculating respirometer system
- 15 respirometer chambers
- Volume: 11.3 *l*
- Computer controlled
- Continuous O₂ measurement
- Automatic feeding

➡ Conditions

- 5 fish of each strain
- Duration: 17 weeks
- Temperature: 27 ± 0.2 °C
- Dissolved O₂: 5.93 7.58 mg/l
- pH: 7.32 7.62
- Light: 12 h light / 12 h dark


Measurement of swimming activity


- Transparent plastic sheet with grid lines (8.5 cm × 9.75 cm)
- Observed from above for 15 min for each fish
- Twice a day at varying hours
- Twice a week

Dissection details

• Fish were dissected for measuring the intestinal parameters:

RESULTS: Body mass development

Body mass, growth rate and feed utilization efficiencies

Parameters	GIFT-SR	GIFT-NSR	CNT-NSR
Initial body mass (g)	58.8 ± 13.5	52.6 ± 32.5	68.7 ± 16.3
Final body mass (g)	215.7 ± 34.3	199.5 ± 66.9	216.5 ± 53.9
Metabolic growth rate (g kg ^{-0.8} d ⁻¹)	10.2 ± 2.8	11.0 ± 3.0	9.9 ± 2.7
Feed conversion efficiency (g gain / g feed DM)	0.8 ± 0.3	0.7 ± 0.3	0.6 ± 0.3

(n = 5, DM = dry matter)

Average metabolic rates (mg O₂ kg^{-0.8} h⁻¹)

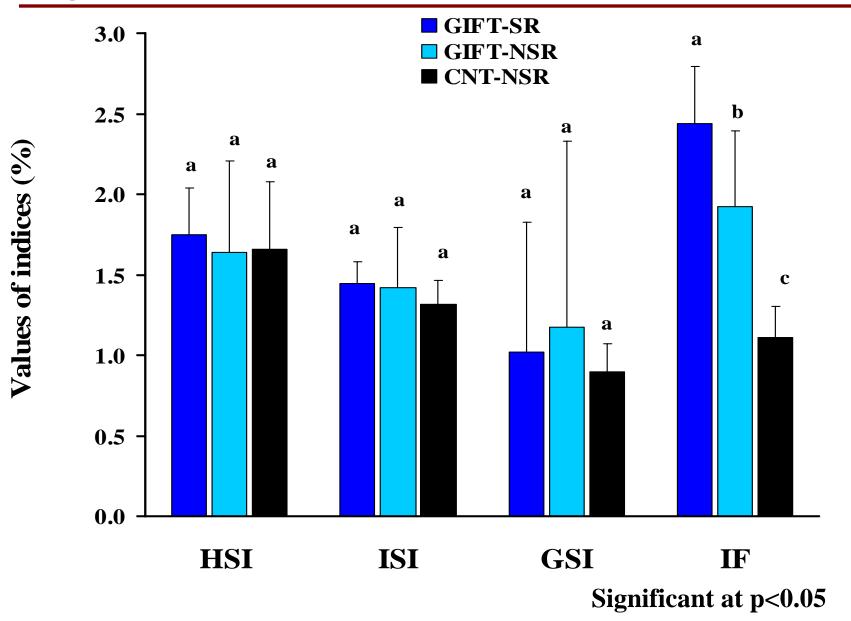
Tilapia groups (n = 5)		GIFT-SR GIFT-NSR		CNT-NSR	
SMR	Initial	49 ± 13	48 ± 10	55 ± 5	
	Final	91 ± 31	108 ± 36	85 ± 31	
RMR (Av. 1	5 weeks)	148 ± 16	147 ± 15	154 ± 12	

(mean ± standard deviation)

Parameters	GIFT-SR	GIFT-NSR	CNT-NSR
Protein efficiency ratio	$\textbf{2.0} \pm \textbf{0.2}$	1.8 ± 0.6	1.6 ± 0.1
Productive protein value (%)	38.3 ± 1.7	33.1 ± 10.2	30.0 ± 2.5
Apparent lipid conversion (%)	99.2 ± 9.5	79.9 ± 34.6	68.6 ± 10.5

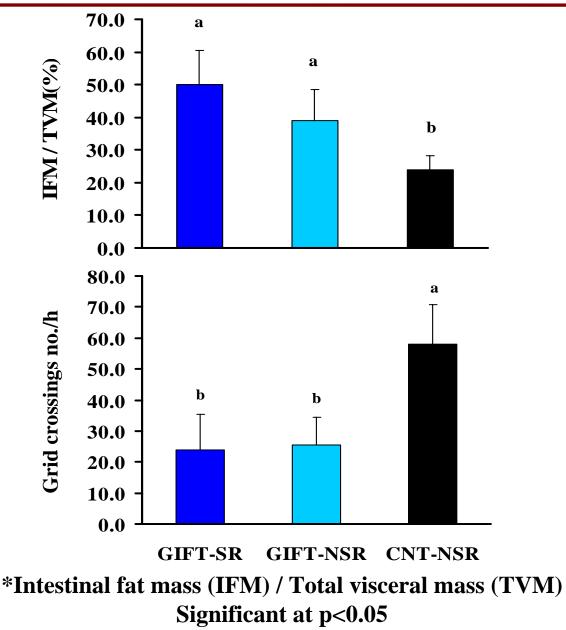
(**n** = 5)

Parameters	GIFT-SR	GIFT-NSR	CNT-NSR	
Feed GEO (kJ)	3879 ± 715	4082 ± 1307	4425 ± 1013	
Total energy expenditure* (kJ)	1194 ± 169	1135 ± 361	1326 ± 245	
Energy expenditure (% GEO)	31.1 ± 3.3	28.5 ± 1.1	30.2 ± 2.0	
Energy retention (% GEO)	$36.7^{a} \pm 2.0$	$\mathbf{30.7^{ab} \pm 10.1}$	$26.9^{b} \pm 3.2$	
Apparent not metabolized energy (% GEO)	$32.3^{b} \pm 3.6$	$40.9^{ab} \pm 10.3$	$42.8^{a} \pm 4.0$	
*Calculated from O ₂ consumption				


GEO = **Gross** energy offered

Significant at p<0.05

Initial and final proximate body composition


Proximate composition	Initial $(n = 3)$			Final (n = 5)		
Ingredients	GIFT -SR	GIFT -NSR	CNT- NSR	GIFT -SR	GIFT -NSR	CNT -NSR
Dry matter (DM, % of fresh matter)	20.1 ª	24.5ª	24.9 ª	32.3 ª	32.2 ^a	31.3 ª
Crude protein (% DM)	63.9 ª	62.2ª	65.6 ^a	54.8 ª	55.1ª	57.1 ª
Crude lipid (% DM)	16.9 ª	19.3 ^a	13.4 ^a	27.8 ^a	26.0 ^{ab}	23.6 ^b
Ash (% DM)	16.7 ^b	16.0 ^b	18.9 ^a	14.5 ^b	15.4 ^{ab}	16.2 ^a
Gross energy (kJ/g DM)	21.7ª	21.9 ^a	20.6 ^a	24.6 ^a	24.0 ^{ab}	23.4 ^b

Significant at p<0.05

Organo-somatic indices and intestinal fat content

Intestinal fat mass (A) and swimming activity (B)

CONCLUSION

- No significant differences were observed in growth
 performance and metabolic efficiency between the three Nile
 tilapia groups under standardized laboratory conditions
- No significant differences were observed in FCE and feed intake among the three groups
- No significant differences were observed in SMR and RMR among the three groups
- GIFT strains were less active and retained more energy in the form of deposited fat
- There is a major conflict between the farm feeding trials and laboratory experiments

Following behavioral studies may also help to resolve the conflicts between farm and laboratory experiment -

- Competition for feed
- Reproduction
- Other behaviors
 - **¬** Territory protection
 - Male dominancy
 - Sexual influence

None of these happen in our laboratory experiment !

Thank you

GROWTH PERFORMANCE AND METABOLIC RATES OF GENETICALLY IMPROVED AND CONVENTIONAL STRAINS OF NILE TILAPIA, OREOCHROMIS NILOTICUS (L.)

Shamsuddin M. Mamun, U. Focken, G. Francis and K. Becker University of Hohenheim, 70599 Stuttgart, Germany

September 2004

Dear Readers,

Unprinted text: line 01, Page 384

 (NH_4+) , nitrate (NO_3-) and nitrate (NO_2-) remained favorable for fishing during the experiment