TILAPIA-SHRIMP POLYCULTURE AT LOW SALINITY WATER: STOCKING DENSITIES OF NILE TILAPIA AND FEEDING STRATEGIES

Yang Yi, Wanwisa Saelee, Potjanee Nadtirom, Aye Aye Mon, Kevin Fitzsimmons

AARM/AIT

Asian Institute of Technology
Thailand

Univeristy of Arizona USA

Aquaculture CRSP

Introduction (1)

Coastal shrimp culture

- One of the major problems is the disease outbreak such as white spot
- Causes the failure of marine shrimp production
- Abandoned shrimp ponds

Inland shrimp culture

• Rapid expansion of shrimp culture into many inland areas

Sustainable shrimp culture

- The polyculture of shrimp-tilapia at relative low stocking density may provide an opportunity to develop a sustainable aquaculture system
- To best utilize abandoned shrimp ponds in coastal areas and low-salinity shrimp ponds in inland areas.

Objective

• To determine optimal stocking density of Nile tilapia in a tilapia-shrimp polyculture system at low salinity.

Experimental Design

- Treatment 1 (shrimp monoculture):
 - Shrimp (*Penaeus monodon*)
 - Density: 30 pcs/m²
- Treatment 2 (Low tilapia density polyculture):
 - Shrimp plus Nile tilapia
 - Tilapia density: 0.25 fish/m²
- Treatment 3 (Low tilapia density polyculture):
 - Shrimp plus Nile tilapia
 - Tilapia density: 0.5 fish/m²

Two Experiments

- Experiment 1
 - Varied feed ration in individual ponds
 - Determined by feeding tray method

- Experiment 2
 - Fixed feed ration in all ponds
 - Determined by a feeding table

Experimental Conditions

- Nine 200-m² earthen ponds
- Shrimp PL60 (0.4-1.2 g)
- Tilapia (5-8 g) stocked 1 week after shrimp stocking
- Pond fertilization once before stocking
- Shrimp feed (36% CP), fed at 0600, 1200 1800, 0000
- Initial salinity 5 ppt, then no more saline water added
- Diffusing aeration system, 24 hrs daily
- No water exchange
- No chemical/drug use

Harvested shrimp and tilapia

Experiment 1. Shrimp performance

			Treatment	S
Parameter	Unit	Monoculture	Polyculture	
			Low density	High density
Stocking				
Mean weight	g/pieces	1.2 ± 0	1.2 ± 0	1.2 ± 0
Total weight	kg/pond	7.3 ± 0	7.3 ± 0	7.3 ± 0
Harvest				
Mean weight	g/piece	16.3 ± 0.98	16.6±1.05	15.4 ± 0.66
Total weight	kg/pond	61.8 ± 2.14	59.1±5.58	63.6±1.78
Survival rate	%	64.00±1.78ab	59.00±2.73 ^b	69.00±1.73 ^a
Net yield	t/ha/crop	4.19 ± 0.16	3.98 ± 0.43	4.33 ± 0.14
Gross yield	t/ha/crop	4.75 ± 0.16	4.55 ± 0.43	4.89 ± 0.14
Feed input	kg/pond/crop	87.7 ± 2.79^{a}	108.9 ± 1.78^{b}	112.2 ± 0.26^{b}
Apparent FCR		1.62 ± 0.11	2.14 ± 0.20	2.00 ± 0.06

Experiment 1. Tilapia performance

	_			
		Treatments		
Parameter	Unit	Low tilapia density polyculture	High tilapia density polyculture	
Stocking				
Mean weight	g/fish	5.5 ± 0	5.5 ± 0	
Total weight	kg/pond	0.3 ± 0^{a}	0.6 ± 0^{b}	
Harvest				
Mean weight	g/fish	263.9 ± 7.73	267.8 ± 15.88	
Total weight	kg/pond	11.6 ± 1.28 ^a	26.0 ± 1.34^{b}	
Survival rate	%	82.67 ± 8.19	88.00 ± 2.06	
Daily weight gain	g/fish/day	3.98 ± 0.00	4.04 ± 0.24	
Net yield	t/ha/crop	0.87 ± 0.10^{a}	1.96 ± 0.10^{b}	
Gross yield	t/ha/crop	0.89 ± 0.10^{a}	2.00 ± 0.10^{b}	

Experiment 1: Partial budget analysis (based on 200-m² ponds for 65 days, US\$/200m²/crop)

Items	Monoculture	Low tilapia density polyculture	High tilapia density polyculture
Gross revenue			
Shrimp	264.91	253.50	272.63
Tilapia	-	4.16	9.35
Total	264.91	257.66	281.98
Total variable cost	144.03	162.79	167.42
Net return	120.88	94.87	114.56
Added cost	-	18.76	23.39
Added return	-	-7.25	17.07
Added return/added cost		-0.39	0.73

Experiment 1: Conclusion

Tilapia-shrimp polyculture is:

- Technically feasible
- Environmentally not sure
- Economically not attractive

Further research:

Adjust feeding strategy

Experiment 2. Shrimp performance

	Unit		Treatments		
Parameter		Monoculture -	Polyc	Polyculture	
			Low density	High densit	
Stocking					
Mean weight	g/pieces	0.4 ± 0.00	0.4 ± 0.00	0.4±0.00	
Total weight	kg/pond	2.6±0.00	2.6±0.00	2.6±0.00	
Harvest					
Mean weight	g/piece	12.7±0.37	12.8±0.33	12.3 ± 0.28	
Total weight	kg/pond	50.6±1.18 ^b	60.6±2.90a	52.1±2.30b	
Survival rate	%	66.70±3.60	79.50±5.61	70.70±1.86	
Net yield	t/ha/crop	2.40 ± 0.06^{b}	2.90±0.15 ^a	2.47±0.12 ^b	
Gross yield	t/ha/crop	2.53±0.06 ^b	3.03±0.15 ^a	2.6±0.12 ^b	
Feed input	kg/pond/crop	83.1	83.1	83.1	
Apparent FCR		1.70±0.04 ^b	1.44 ± 0.07 ^a	1.69±0.08 ^b	

Experiment 2. Tilapia performance

romotor	T Taol 4	Polyculture treatments		
rameter	Unit	Low tilapia density	High tilapia density	
ocking				
Mean weight	g/fish	8.0±0.28a	6.6±0.12 ^b	
Total weight	kg/pond	0.40 ± 0.02^{a}	0.67±0.01 ^b	
arvest				
Mean weight	g/fish	323.5±8.19	326.4±16.36	
Total weight	kg/pond	15.7±0.31 ^a	30.5±1.87 ^b	
Survival rate	%	97.33±0.67 ^a	93.33±1.20 ^b	
aily weight gain	g/fish/day	4.64±0.12	4.70±0.24	
et yield	t/ha/crop	0.77 ± 0.02^{a}	1.49±0.09 ^b	
oss yield	t/ha/crop	0.79 ± 0.02^{a}	1.53±0.09 ^b	

Experiment 2: Partial budget analysis (based on 200-m² ponds for 65 days, US\$/200m²/crop)

(based on 200-m ² ponds for 65 days, US\$/200m ² /crop)					
Items	Monoculture	Low tilapia density	High tilapia density		
oss revenue					
Shrimp	192.94	230.77	198.46		
Tilapia Tilapia	-	7.56	14.64		
Total	192.94	238.33	213.10		
tal variable cost	144.39	146.39	148.39		
et return	48.54	91.93	64.71		
lded cost	-	2	4		
lded return	<u>-</u>	45.39	20.16		
lded return/added cost	-	22.69	5.04		

Experiment 2: Conclusion

Tilapia-shrimp polyculture is:

- Technically feasible
- Environmentally friendly
- Economically attractive

Further research:

Optimize feeding regime

General Conclusions

Technically feasible

Under appropriate feeding strategy

- Environmentally friendly
- Economically attractive
- Use of cost effective diets and optimization of feeding inputs is therefore vital in sustainable shrimp farming and can make the shrimp-tilapia polyculture more attractive to shrimp farmers:
- The addition of Nile tilapia into shrimp ponds can improve feed utilization efficiency, resulting in better economic returns and less environmental pollution

