Lettuce drop: Current and future management considerations

Michael Matheron
Extension Plant Pathologist
Yuma Agricultural Center

Sclerotinia drop on lettuce Sclerotinia minor and Sclerotinia sclerotiorum

Disease cycle for Sclerotinia drop begins and ends with sclerotia

Disease cycle: Sclerotinia minor

Disease cycle: Sclerotinia sclerotiorum

Airborne spores of S. sclerotiorum

2010 Sclerotinia aerial infection outbreak

Requirements for aerial spore production and infection by *S. sclerotiorum*

- Aerial spore production
 - Sclerotia in the top 2 inches of soil
 - Wet soil
 - Soil temperatures from 46 61°F
- Aerial spore infection of lettuce
 - Presence of free water on leaves
 - Senescent plant tissue

2010 Sclerotinia aerial infection outbreak Field temperature and moisture data*:

■Nov 26-30

- 2010: 5 days with low below 40°F (32-38°F)
- 2007, 08, 09: No days with low below 40°F
- 2006: One day with low below 40°F (35°F)

December

- 2010: 14 days (all consecutive) with RH ≥ 90% (92-100%)
- 2009: 5 days (2 consecutive) with RH ≥ 90% (90-95%)
- 2008: 12 days (7 consecutive) with RH ≥ 90% (91-100%)
- 2007: 8 days (3 consecutive) with RH ≥ 90% (91-97%)
- 2006: 1 day with RH ≥ 90% (94%)

*Yuma Valley AZMET station

2010 Sclerotinia aerial infection outbreak

Requirements for aerial spore production and infection by *S. sclerotiorum*

- Aerial spore production
 - Sclerotia in the top 2 inches of soil
 - Wet soil
 - Soil temperatures from 46 61°F
- Aerial spore infection of lettuce
 - Presence of free water on leaves
 - Senescent plant tissue

Most Sclerotinia drop on lettuce in Arizona is initiated by direct germination of sclerotia

 Direct germination of sclerotia favored by wet soil at temperatures ranging from 50 to 75°F

More abundant production of sclerotia (10 to 100X) by *S. minor* compared to *S. sclerotiorum*

Summary of differences between Sclerotinia minor and S. sclerotiorum

- Size of sclerotia
- Abundance of sclerotia
- Ability of S. sclerotiorum to produce aerial spores
 - When this occurs, entire fields can be infected and destroyed

At the end of the crop, sclerotia mixed back into soil to await the next lettuce crop

Management of Sclerotinia drop

- The target of disease control efforts are the sclerotia
- Sclerotia allow the pathogens to carry over in soil from one lettuce crop to another
- Disease management tools
 - Cultural
 - Biological
 - Chemical

Cultural disease management tools

- Do nothing
 - Population of sclerotia will decline over time
- Soil solarization
 - Sclerotia in nonsolarized furrows will not be affected
- Summer soil flooding for 3-4 weeks

Effect of soil temperature and moisture On viability of *Sclerotinia* sclerotia

Effect of soil temperature on viability of sclerotia of *S. minor*

Summary of 3 trials. Soil irrigated every 1-2 wk, depending on the trial Sclerotia at 0 and 2 inch depth.

Effect of soil temperature on viability of sclerotia of *S. sclerotiorum*

Summary of 3 trials. Soil irrigated every 1-2 wk, depending on the trial Sclerotia 0 and 2 inch depth.

Effect of soil moisture on viability of sclerotia of *S. minor*

Summary of 3 trials. Soil irrigated every 1-2 wk, depending on the trial. Sclerotia 0 – 2 inches deep. Mean soil temp. 90°F for irrigated and 102°F for nonirrigated soil.

Effect of soil moisture on viability of sclerotia of *S. sclerotiorum*

Percentage of sclerotia that did not germinate

Summary of 3 trials. Soil irrigated every 1-2 wk, depending on the trial. Sclerotia 0-2 inches deep. Mean soil temp. $90^{\circ}F$ for irrigated and $102^{\circ}F$ for nonirrigated soil.

Effect of soil flooding on viability of Sclerotinia sclerotia

Effect of summer soil flooding on viability of sclerotia

Sclerotinia drop management tools

- Cultural
- Biological
- Chemical

Management of Sclerotinia drop with biofungicides

Evaluating efficacy

Biofungicides evaluated in 2009 trial

Product	Active ingredient	Source	Applications
Actinovate	Streptomyces lydicus	Natural Industries	At seeding, after thinning
Contans	Coniothyrium minitans	SipcamAdvan	At seeding, after thinning
Endura	Boscalid	BASF	At seeding, after thinning
Humega 81 Humega S	Bacillus amyloliquefaciens B. amyloliquefaciens, B. megaterium, B. subtilis	BioFlora	At seeding, +14 and 28 days
Sil-Matrix	Potassium silicate	Certis USA	At seeding, +6 times
SoilGard	Gliocladium virens	Certis USA	At seeding, after thinning
Tenet	Trichoderma asperellum T. gamsii	SipcamAdvan	At seeding, after thinning

Percent lettuce drop control

2010 biofungicide trial

Sclerotinia drop management tools

- Cultural
- Biological
- Chemical

Management of Sclerotinia drop with conventional chemistries

Evaluating efficacy

Growth stages of crisphead lettuce and occurrence of Sclerotinia drop

Chemical disease management

- Traditional application timing: Applied to bed and base of plants to prevent germination of sclerotia at or near soil surface
 - Immediately after thinning and cultivation
 - At rosette stage (2-3 weeks after thinning)

Relative efficacy of products for management of lettuce drop caused by each species of *Sclerotinia*

Each value is the mean from 4 trials, with 2 applications of each product per trial

Field trial protocol 2010-11 field trial Evaluation of new chemistries

- Lettuce seeded on raised beds in double rows,12 inches apart
- At thinning, sclerotia produced in the laboratory were spread on the surface of each 25-ft-long plot between the rows of lettuce seed and mixed into the top 2-inches of soil
 - 2100 sclerotia of S. minor, 800 of S. sclerotiorum per plot
 - Five replicate plots per treatment

Field trial protocol (continued)

- First application of products after thinning
- Field irrigated by sprinkler irrigation to germinate seed, then furrow irrigated for remainder of trial
- One subsequent application of products 2 weeks after thinning
- At crop maturity, the number of dead plants per plot due to Sclerotinia infection was recorded

Products tested in 2010-11 lettuce drop trial

Trade name	Active ingredient	Source	FRAC#	
Contans	Coniothyrium minitans	Sipcam/Advan		
Endura	Boscalid	BASF	7	
Rovral	Iprodione	Bayer	2	
SoilGard	Gliocladium virens	Certis		
Switch	Cyprodinil + fludioxonil	Syngenta	9+12	
Cannonball	Fludioxonil	Syngenta	12	
Fontelis	Penthiopyrad	DuPont	7	
Omega	Fluazinam	Syngenta	29	
Experimental				
S-2200				
Registered on lettuce				

Lettuce drop control: S. minor 2010 trial

Two applications: at thinning and 2 wk later

^{*} Omega applied only after thinning

Lettuce drop control: S. sclerotiorum 2010

Two applications: at thinning and 2 wk later

^{*} Omega applied only after thinning

Lettuce drop control: S. minor

Two year average

Lettuce drop control: S. sclerotiorum

Two year average

Future research

- Examine alternate methods of application with the goal of maximizing control of Sclerotinia drop
 - Application at seeding vs. at thinning
 - Incorporation into soil vs. application to soil surface
 - Single compared to multiple applications

Thank you for your attention